Abstract:Inverse problems, such as accelerated MRI reconstruction, are ill-posed and an infinite amount of possible and plausible solutions exist. This may not only lead to uncertainty in the reconstructed image but also in downstream tasks such as semantic segmentation. This uncertainty, however, is mostly not analyzed in the literature, even though probabilistic reconstruction models are commonly used. These models can be prone to ignore plausible but unlikely solutions like rare pathologies. Building on MRI reconstruction approaches based on diffusion models, we add guidance to the diffusion process during inference, generating two meaningfully diverse reconstructions corresponding to an upper and lower bound segmentation. The reconstruction uncertainty can then be quantified by the difference between these bounds, which we coin the 'uncertainty boundary'. We analyzed the behavior of the upper and lower bound segmentations for a wide range of acceleration factors and found the uncertainty boundary to be both more reliable and more accurate compared to repeated sampling. Code is available at https://github.com/NikolasMorshuis/SGR
Abstract:Deep Learning (DL) methods have shown promising results for solving ill-posed inverse problems such as MR image reconstruction from undersampled $k$-space data. However, these approaches currently have no guarantees for reconstruction quality and the reliability of such algorithms is only poorly understood. Adversarial attacks offer a valuable tool to understand possible failure modes and worst case performance of DL-based reconstruction algorithms. In this paper we describe adversarial attacks on multi-coil $k$-space measurements and evaluate them on the recently proposed E2E-VarNet and a simpler UNet-based model. In contrast to prior work, the attacks are targeted to specifically alter diagnostically relevant regions. Using two realistic attack models (adversarial $k$-space noise and adversarial rotations) we are able to show that current state-of-the-art DL-based reconstruction algorithms are indeed sensitive to such perturbations to a degree where relevant diagnostic information may be lost. Surprisingly, in our experiments the UNet and the more sophisticated E2E-VarNet were similarly sensitive to such attacks. Our findings add further to the evidence that caution must be exercised as DL-based methods move closer to clinical practice.