Abstract:The success of AI is based on the availability of data to train models. While in some cases a single data custodian may have sufficient data to enable AI, often multiple custodians need to collaborate to reach a cumulative size required for meaningful AI research. The latter is, for example, often the case for rare diseases, with each clinical site having data for only a small number of patients. Recent algorithms for federated synthetic data generation are an important step towards collaborative, privacy-preserving data sharing. Existing techniques, however, focus exclusively on synthesizer training, assuming that the training data is already preprocessed and that the desired synthetic data can be delivered in one shot, without any hyperparameter tuning. In this paper, we propose an end-to-end collaborative framework for publishing of synthetic data that accounts for privacy-preserving preprocessing as well as evaluation. We instantiate this framework with Secure Multiparty Computation (MPC) protocols and evaluate it in a use case for privacy-preserving publishing of synthetic genomic data for leukemia.
Abstract:When acting as a privacy-enhancing technology, synthetic data generation (SDG) aims to maintain a resemblance to the real data while excluding personally-identifiable information. Many SDG algorithms provide robust differential privacy (DP) guarantees to this end. However, we show that the strongest class of SDG algorithms--those that preserve \textit{marginal probabilities}, or similar statistics, from the underlying data--leak information about individuals that can be recovered more efficiently than previously understood. We demonstrate this by presenting a novel membership inference attack, MAMA-MIA, and evaluate it against three seminal DP SDG algorithms: MST, PrivBayes, and Private-GSD. MAMA-MIA leverages knowledge of which SDG algorithm was used, allowing it to learn information about the hidden data more accurately, and orders-of-magnitude faster, than other leading attacks. We use MAMA-MIA to lend insight into existing SDG vulnerabilities. Our approach went on to win the first SNAKE (SaNitization Algorithm under attacK ... $\varepsilon$) competition.
Abstract:While Large Language Models (LLMs) are being quickly adapted to many domains, including healthcare, their strengths and pitfalls remain under-explored. In our study, we examine the effects of prompt engineering to guide Large Language Models (LLMs) in delivering parts of a Problem-Solving Therapy (PST) session via text, particularly during the symptom identification and assessment phase for personalized goal setting. We present evaluation results of the models' performances by automatic metrics and experienced medical professionals. We demonstrate that the models' capability to deliver protocolized therapy can be improved with the proper use of prompt engineering methods, albeit with limitations. To our knowledge, this study is among the first to assess the effects of various prompting techniques in enhancing a generalist model's ability to deliver psychotherapy, focusing on overall quality, consistency, and empathy. Exploring LLMs' potential in delivering psychotherapy holds promise with the current shortage of mental health professionals amid significant needs, enhancing the potential utility of AI-based and AI-enhanced care services.
Abstract:Users worldwide access massive amounts of curated data in the form of rankings on a daily basis. The societal impact of this ease of access has been studied and work has been done to propose and enforce various notions of fairness in rankings. Current computational methods for fair item ranking rely on disclosing user data to a centralized server, which gives rise to privacy concerns for the users. This work is the first to advance research at the conjunction of producer (item) fairness and consumer (user) privacy in rankings by exploring the incorporation of privacy-preserving techniques; specifically, differential privacy and secure multi-party computation. Our work extends the equity of amortized attention ranking mechanism to be privacy-preserving, and we evaluate its effects with respect to privacy, fairness, and ranking quality. Our results using real-world datasets show that we are able to effectively preserve the privacy of users and mitigate unfairness of items without making additional sacrifices to the quality of rankings in comparison to the ranking mechanism in the clear.
Abstract:Legal and ethical restrictions on accessing relevant data inhibit data science research in critical domains such as health, finance, and education. Synthetic data generation algorithms with privacy guarantees are emerging as a paradigm to break this data logjam. Existing approaches, however, assume that the data holders supply their raw data to a trusted curator, who uses it as fuel for synthetic data generation. This severely limits the applicability, as much of the valuable data in the world is locked up in silos, controlled by entities who cannot show their data to each other or a central aggregator without raising privacy concerns. To overcome this roadblock, we propose the first solution in which data holders only share encrypted data for differentially private synthetic data generation. Data holders send shares to servers who perform Secure Multiparty Computation (MPC) computations while the original data stays encrypted. We instantiate this idea in an MPC protocol for the Multiplicative Weights with Exponential Mechanism (MWEM) algorithm to generate synthetic data based on real data originating from many data holders without reliance on a single point of failure.
Abstract:Group fairness ensures that the outcome of machine learning (ML) based decision making systems are not biased towards a certain group of people defined by a sensitive attribute such as gender or ethnicity. Achieving group fairness in Federated Learning (FL) is challenging because mitigating bias inherently requires using the sensitive attribute values of all clients, while FL is aimed precisely at protecting privacy by not giving access to the clients' data. As we show in this paper, this conflict between fairness and privacy in FL can be resolved by combining FL with Secure Multiparty Computation (MPC) and Differential Privacy (DP). In doing so, we propose a method for training group-fair ML models in cross-device FL under complete and formal privacy guarantees, without requiring the clients to disclose their sensitive attribute values.
Abstract:Machine learning (ML) has become prominent in applications that directly affect people's quality of life, including in healthcare, justice, and finance. ML models have been found to exhibit discrimination based on sensitive attributes such as gender, race, or disability. Assessing if an ML model is free of bias remains challenging to date, and by definition has to be done with sensitive user characteristics that are subject of anti-discrimination and data protection law. Existing libraries for fairness auditing of ML models offer no mechanism to protect the privacy of the audit data. We present PrivFair, a library for privacy-preserving fairness audits of ML models. Through the use of Secure Multiparty Computation (MPC), PrivFair protects the confidentiality of the model under audit and the sensitive data used for the audit, hence it supports scenarios in which a proprietary classifier owned by a company is audited using sensitive audit data from an external investigator. We demonstrate the use of PrivFair for group fairness auditing with tabular data or image data, without requiring the investigator to disclose their data to anyone in an unencrypted manner, or the model owner to reveal their model parameters to anyone in plaintext.
Abstract:We address the problem of learning a machine learning model from training data that originates at multiple data owners while providing formal privacy guarantees regarding the protection of each owner's data. Existing solutions based on Differential Privacy (DP) achieve this at the cost of a drop in accuracy. Solutions based on Secure Multiparty Computation (MPC) do not incur such accuracy loss but leak information when the trained model is made publicly available. We propose an MPC solution for training DP models. Our solution relies on an MPC protocol for model training, and an MPC protocol for perturbing the trained model coefficients with Laplace noise in a privacy-preserving manner. The resulting MPC+DP approach achieves higher accuracy than a pure DP approach while providing the same formal privacy guarantees. Our work obtained first place in the iDASH2021 Track III competition on confidential computing for secure genome analysis.
Abstract:Most existing Secure Multi-Party Computation (MPC) protocols for privacy-preserving training of decision trees over distributed data assume that the features are categorical. In real-life applications, features are often numerical. The standard ``in the clear'' algorithm to grow decision trees on data with continuous values requires sorting of training examples for each feature in the quest for an optimal cut-point in the range of feature values in each node. Sorting is an expensive operation in MPC, hence finding secure protocols that avoid such an expensive step is a relevant problem in privacy-preserving machine learning. In this paper we propose three more efficient alternatives for secure training of decision tree based models on data with continuous features, namely: (1) secure discretization of the data, followed by secure training of a decision tree over the discretized data; (2) secure discretization of the data, followed by secure training of a random forest over the discretized data; and (3) secure training of extremely randomized trees (``extra-trees'') on the original data. Approaches (2) and (3) both involve randomizing feature choices. In addition, in approach (3) cut-points are chosen randomly as well, thereby alleviating the need to sort or to discretize the data up front. We implemented all proposed solutions in the semi-honest setting with additive secret sharing based MPC. In addition to mathematically proving that all proposed approaches are correct and secure, we experimentally evaluated and compared them in terms of classification accuracy and runtime. We privately train tree ensembles over data sets with 1000s of instances or features in a few minutes, with accuracies that are at par with those obtained in the clear. This makes our solution orders of magnitude more efficient than the existing approaches, which are based on oblivious sorting.
Abstract:Existing work on privacy-preserving machine learning with Secure Multiparty Computation (MPC) is almost exclusively focused on model training and on inference with trained models, thereby overlooking the important data pre-processing stage. In this work, we propose the first MPC based protocol for private feature selection based on the filter method, which is independent of model training, and can be used in combination with any MPC protocol to rank features. We propose an efficient feature scoring protocol based on Gini impurity to this end. To demonstrate the feasibility of our approach for practical data science, we perform experiments with the proposed MPC protocols for feature selection in a commonly used machine-learning-as-a-service configuration where computations are outsourced to multiple servers, with semi-honest and with malicious adversaries. Regarding effectiveness, we show that secure feature selection with the proposed protocols improves the accuracy of classifiers on a variety of real-world data sets, without leaking information about the feature values or even which features were selected. Regarding efficiency, we document runtimes ranging from several seconds to an hour for our protocols to finish, depending on the size of the data set and the security settings.