Abstract:Literature analysis facilitates researchers to acquire a good understanding of the development of science and technology. The traditional literature analysis focuses largely on the literature metadata such as topics, authors, abstracts, keywords, references, etc., and little attention was paid to the main content of papers. In many scientific domains such as science, computing, engineering, etc., the methods and datasets involved in the scientific papers published in those domains carry important information and are quite useful for domain analysis as well as algorithm and dataset recommendation. In this paper, we propose a novel entity recognition model, called MDER, which is able to effectively extract the method and dataset entities from the main textual content of scientific papers. The model utilizes rule embedding and adopts a parallel structure of CNN and Bi-LSTM with the self-attention mechanism. We evaluate the proposed model on datasets which are constructed from the published papers of four research areas in computer science, i.e., NLP, CV, Data Mining and AI. The experimental results demonstrate that our model performs well in all the four areas and it features a good learning capacity for cross-area learning and recognition. We also conduct experiments to evaluate the effectiveness of different building modules within our model which indicate that the importance of different building modules in collectively contributing to the good entity recognition performance as a whole. The data augmentation experiments on our model demonstrated that data augmentation positively contributes to model training, making our model much more robust in dealing with the scenarios where only small number of training samples are available. We finally apply our model on PAKDD papers published from 2009-2019 to mine insightful results from scientific papers published in a longer time span.
Abstract:This study refers to a reverse question answering(reverse QA) procedure, in which machines proactively raise questions and humans supply answers. This procedure exists in many real human-machine interaction applications. A crucial problem in human-machine interaction is answer understanding. Existing solutions rely on mandatory option term selection to avoid automatic answer understanding. However, these solutions lead to unnatural human-computer interaction and harm user experience. To this end, this study proposed a novel deep answer understanding network, called AntNet, for reverse QA. The network consists of three new modules, namely, skeleton extraction for questions, relevance-aware representation of answers, and multi-hop based fusion. As answer understanding for reverse QA has not been explored, a new data corpus is compiled in this study. Experimental results indicate that our proposed network is significantly better than existing methods and those modified from classical natural language processing (NLP) deep models. The effectiveness of the three new modules is also verified.
Abstract:Literature analysis facilitates researchers better understanding the development of science and technology. The conventional literature analysis focuses on the topics, authors, abstracts, keywords, references, etc., and rarely pays attention to the content of papers. In the field of machine learning, the involved methods (M) and datasets (D) are key information in papers. The extraction and mining of M and D are useful for discipline analysis and algorithm recommendation. In this paper, we propose a novel entity recognition model, called MDER, and constructe datasets from the papers of the PAKDD conferences (2009-2019). Some preliminary experiments are conducted to assess the extraction performance and the mining results are visualized.