Abstract:One of the primary challenges impeding the progress of Neural Architecture Search (NAS) is its extensive reliance on exorbitant computational resources. NAS benchmarks aim to simulate runs of NAS experiments at zero cost, remediating the need for extensive compute. However, existing NAS benchmarks use synthetic datasets and model proxies that make simplified assumptions about the characteristics of these datasets and models, leading to unrealistic evaluations. We present a technique that allows searching for training proxies that reduce the cost of benchmark construction by significant margins, making it possible to construct realistic NAS benchmarks for large-scale datasets. Using this technique, we construct an open-source bi-objective NAS benchmark for the ImageNet2012 dataset combined with the on-device performance of accelerators, including GPUs, TPUs, and FPGAs. Through extensive experimentation with various NAS optimizers and hardware platforms, we show that the benchmark is accurate and allows searching for state-of-the-art hardware-aware models at zero cost.
Abstract:Transformer-based models have greatly pushed the boundaries of time series forecasting recently. Existing methods typically encode time series data into $\textit{patches}$ using one or a fixed set of patch lengths. This, however, could result in a lack of ability to capture the variety of intricate temporal dependencies present in real-world multi-periodic time series. In this paper, we propose MultiResFormer, which dynamically models temporal variations by adaptively choosing optimal patch lengths. Concretely, at the beginning of each layer, time series data is encoded into several parallel branches, each using a detected periodicity, before going through the transformer encoder block. We conduct extensive evaluations on long- and short-term forecasting datasets comparing MultiResFormer with state-of-the-art baselines. MultiResFormer outperforms patch-based Transformer baselines on long-term forecasting tasks and also consistently outperforms CNN baselines by a large margin, while using much fewer parameters than these baselines.
Abstract:User-based attribute information, such as age and gender, is usually considered as user privacy information. It is difficult for enterprises to obtain user-based privacy attribute information. However, user-based privacy attribute information has a wide range of applications in personalized services, user behavior analysis and other aspects. this paper advances the HetPathMine model and puts forward TPathMine model. With applying the number of clicks of attributes under each node to express the user's emotional preference information, optimizations of the solution of meta-path weight are also presented. Based on meta-path in heterogeneous information networks, the new model integrates all relationships among objects into isomorphic relationships of classified objects. Matrix is used to realize the knowledge dissemination of category knowledge among isomorphic objects. The experimental results show that: (1) the prediction of user attributes based on heterogeneous information networks can achieve higher accuracy than traditional machine learning classification methods; (2) TPathMine model based on the number of clicks is more accurate in classifying users of different age groups, and the weight of each meta-path is consistent with human intuition or the real world situation.