Abstract:The air interface technology plays a crucial role in optimizing the communication quality for users. To address the challenges brought by the radio channel variations to air interface design, this article proposes a framework of wireless environment information-aided 6G AI-enabled air interface (WEI-6G AI$^{2}$), which actively acquires real-time environment details to facilitate channel fading prediction and communication technology optimization. Specifically, we first outline the role of WEI in supporting the 6G AI$^{2}$ in scenario adaptability, real-time inference, and proactive action. Then, WEI is delineated into four progressive steps: raw sensing data, features obtained by data dimensionality reduction, semantics tailored to tasks, and knowledge that quantifies the environmental impact on the channel. To validate the availability and compare the effect of different types of WEI, a path loss prediction use case is designed. The results demonstrate that leveraging environment knowledge requires only 2.2 ms of model inference time, which can effectively support real-time design for future 6G AI$^{2}$. Additionally, WEI can reduce the pilot overhead by 25\%. Finally, several open issues are pointed out, including multi-modal sensing data synchronization and information extraction method construction.
Abstract:As the underlying foundation of a digital twin network (DTN), a digital twin channel (DTC) can accurately depict the process of radio propagation in the air interface to support the DTN-based 6G wireless network. Since radio propagation is affected by the environment, constructing the relationship between the environment and radio wave propagation is the key to improving the accuracy of DTC, and the construction method based on artificial intelligence (AI) is the most concentrated. However, in the existing methods, the environment information input into the neural network (NN) has many dimensions, and the correlation between the environment and the channel relationship is unclear, resulting in a highly complex relationship construction process. To solve this issue, in this paper, we propose a construction method of radio environment knowledge (REK) inspired by the electromagnetic wave property to quantify the contribution of radio propagation. Specifically, a range selection scheme for effective environment information based on random geometry is proposed to reduce the redundancy of environment information. We quantify the contribution of radio propagation reflection, diffraction and scatterer blockage using environment information and propose a flow chart of REK construction to replace the feature extraction process partially based on NN. To validate REK's effectiveness, we conduct a path loss prediction task based on a lightweight convolutional neural network (CNN) employing a simple two-layer convolutional structure. The results show that the accuracy of the range selection method reaches 90\%; the constructed REK maintains the prediction error of 0.3 and only needs 0.04 seconds of testing time, effectively reducing the network complexity.
Abstract:Technology research and standardization work of sixth generation (6G) has been carried out worldwide. Channel research is the prerequisite of 6G technology evaluation and optimization. This paper presents a survey and tutorial on channel measurement, modeling, and simulation for 6G. We first highlight the challenges of channel for 6G systems, including higher frequency band, extremely large antenna array, new technology combinations, and diverse application scenarios. A review of channel measurement and modeling for four possible 6G enabling technologies is then presented, i.e., terahertz communication, massive multiple-input multiple-output communication, joint communication and sensing, and reconfigurable intelligent surface. Finally, we introduce a 6G channel simulation platform and provide examples of its implementation. The goal of this paper is to help both professionals and non-professionals know the progress of 6G channel research, understand the 6G channel model, and use it for 6G simulation.
Abstract:Terahertz (THz) channel propagation characteristics are vital for the design, evaluation, and optimization for THz communication systems. Moreover, reflection plays a significant role in channel propagation. In this letter, the reflection coefficient of the THz channel is researched based on extensive measurement campaigns. Firstly, we set up the THz channel sounder from 220 to 320 GHz with the incident angle ranging from 10{\deg} to 80{\deg}. Based on the measured propagation loss, the reflection coefficients of five building materials, i.e., glass, tile, aluminium alloy, board, and plasterboard, are calculated separately for frequencies and incident angles. It is found that the lack of THz relative parameters leads to the Fresnel model of non-metallic materials can not fit the measured data well. Thus, we propose a frequency-angle two-dimensional reflection coefficient model by modifying the Fresnel model with the Lorenz and Drude model. The proposed model characterizes the frequency and incident angle for reflection coefficients and shows low root-mean-square error with the measured data. Generally, these results are useful for modeling THz channels.