Abstract:This paper describes NAIST's submission to the simultaneous track of the IWSLT 2024 Evaluation Campaign: English-to-{German, Japanese, Chinese} speech-to-text translation and English-to-Japanese speech-to-speech translation. We develop a multilingual end-to-end speech-to-text translation model combining two pre-trained language models, HuBERT and mBART. We trained this model with two decoding policies, Local Agreement (LA) and AlignAtt. The submitted models employ the LA policy because it outperformed the AlignAtt policy in previous models. Our speech-to-speech translation method is a cascade of the above speech-to-text model and an incremental text-to-speech (TTS) module that incorporates a phoneme estimation model, a parallel acoustic model, and a parallel WaveGAN vocoder. We improved our incremental TTS by applying the Transformer architecture with the AlignAtt policy for the estimation model. The results show that our upgraded TTS module contributed to improving the system performance.
Abstract:This study examines the effect of grammatical features in automatic essay scoring (AES). We use two kinds of grammatical features as input to an AES model: (1) grammatical items that writers used correctly in essays, and (2) the number of grammatical errors. Experimental results show that grammatical features improve the performance of AES models that predict the holistic scores of essays. Multi-task learning with the holistic and grammar scores, alongside using grammatical features, resulted in a larger improvement in model performance. We also show that a model using grammar abilities estimated using Item Response Theory (IRT) as the labels for the auxiliary task achieved comparable performance to when we used grammar scores assigned by human raters. In addition, we weight the grammatical features using IRT to consider the difficulty of grammatical items and writers' grammar abilities. We found that weighting grammatical features with the difficulty led to further improvement in performance.
Abstract:This paper analyzes the features of monotonic translations, which follow the word order of the source language, in simultaneous interpreting (SI). The word order differences are one of the biggest challenges in SI, especially for language pairs with significant structural differences like English and Japanese. We analyzed the characteristics of monotonic translations using the NAIST English-to-Japanese Chunk-wise Monotonic Translation Evaluation Dataset and found some grammatical structures that make monotonic translation difficult in English-Japanese SI. We further investigated the features of monotonic translations through evaluating the output from the existing speech translation (ST) and simultaneous speech translation (simulST) models on NAIST English-to-Japanese Chunk-wise Monotonic Translation Evaluation Dataset as well as on existing test sets. The results suggest that the existing SI-based test set underestimates the model performance. We also found that the monotonic-translation-based dataset would better evaluate simulST models, while using an offline-based test set for evaluating simulST models underestimates the model performance.
Abstract:It remains a question that how simultaneous interpretation (SI) data affects simultaneous machine translation (SiMT). Research has been limited due to the lack of a large-scale training corpus. In this work, we aim to fill in the gap by introducing NAIST-SIC-Aligned, which is an automatically-aligned parallel English-Japanese SI dataset. Starting with a non-aligned corpus NAIST-SIC, we propose a two-stage alignment approach to make the corpus parallel and thus suitable for model training. The first stage is coarse alignment where we perform a many-to-many mapping between source and target sentences, and the second stage is fine-grained alignment where we perform intra- and inter-sentence filtering to improve the quality of aligned pairs. To ensure the quality of the corpus, each step has been validated either quantitatively or qualitatively. This is the first open-sourced large-scale parallel SI dataset in the literature. We also manually curated a small test set for evaluation purposes. We hope our work advances research on SI corpora construction and SiMT. Please find our data at \url{https://github.com/mingzi151/AHC-SI}.