Abstract:Recent advances in simultaneous speech translation (SST) focus on the decision policies that enable the use of offline-trained ST models for simultaneous inference. These decision policies not only control the quality-latency trade-off in SST but also mitigate the impact of unstable predictions on translation quality by delaying translation for more context or discarding these predictions through stable hypothesis detection. However, these policies often overlook the potential benefits of utilizing unstable predictions. We introduce the contrastive feedback mechanism (CFM) for SST, a novel method that leverages these unstable predictions as feedback to improve translation quality. CFM guides the system to eliminate undesired model behaviors from these predictions through a contrastive objective. The experiments on 3 state-of-the-art decision policies across 8 languages in the MuST-C v1.0 dataset show that CFM effectively improves the performance of SST.
Abstract:This paper describes NAIST's submission to the simultaneous track of the IWSLT 2024 Evaluation Campaign: English-to-{German, Japanese, Chinese} speech-to-text translation and English-to-Japanese speech-to-speech translation. We develop a multilingual end-to-end speech-to-text translation model combining two pre-trained language models, HuBERT and mBART. We trained this model with two decoding policies, Local Agreement (LA) and AlignAtt. The submitted models employ the LA policy because it outperformed the AlignAtt policy in previous models. Our speech-to-speech translation method is a cascade of the above speech-to-text model and an incremental text-to-speech (TTS) module that incorporates a phoneme estimation model, a parallel acoustic model, and a parallel WaveGAN vocoder. We improved our incremental TTS by applying the Transformer architecture with the AlignAtt policy for the estimation model. The results show that our upgraded TTS module contributed to improving the system performance.