Abstract:This study presents NewsBench, a novel benchmark framework developed to evaluate the capability of Large Language Models (LLMs) in Chinese Journalistic Writing Proficiency (JWP) and their Safety Adherence (SA), addressing the gap between journalistic ethics and the risks associated with AI utilization. Comprising 1,267 tasks across 5 editorial applications, 7 aspects (including safety and journalistic writing with 4 detailed facets), and spanning 24 news topics domains, NewsBench employs two GPT-4 based automatic evaluation protocols validated by human assessment. Our comprehensive analysis of 11 LLMs highlighted GPT-4 and ERNIE Bot as top performers, yet revealed a relative deficiency in journalistic ethic adherence during creative writing tasks. These findings underscore the need for enhanced ethical guidance in AI-generated journalistic content, marking a step forward in aligning AI capabilities with journalistic standards and safety considerations.
Abstract:Accurate segmentation of skin lesions in dermatoscopic images is crucial for the early diagnosis of skin cancer and improving the survival rate of patients. However, it is still a challenging task due to the irregularity of lesion areas, the fuzziness of boundaries, and other complex interference factors. In this paper, a novel LCAUnet is proposed to improve the ability of complementary representation with fusion of edge and body features, which are often paid little attentions in traditional methods. First, two separate branches are set for edge and body segmentation with CNNs and Transformer based architecture respectively. Then, LCAF module is utilized to fuse feature maps of edge and body of the same level by local cross-attention operation in encoder stage. Furthermore, PGMF module is embedded for feature integration with prior guided multi-scale adaption. Comprehensive experiments on public available dataset ISIC 2017, ISIC 2018, and PH2 demonstrate that LCAUnet outperforms most state-of-the-art methods. The ablation studies also verify the effectiveness of the proposed fusion techniques.