Abstract:We address the problem of layout generation for diverse domains such as images, documents, and mobile applications. A layout is a set of graphical elements, belonging to one or more categories, placed together in a meaningful way. Generating a new layout or extending an existing layout requires understanding the relationships between these graphical elements. To do this, we propose a novel framework, LayoutTransformer, that leverages a self-attention based approach to learn contextual relationships between layout elements and generate layouts in a given domain. The proposed model improves upon the state-of-the-art approaches in layout generation in four ways. First, our model can generate a new layout either from an empty set or add more elements to a partial layout starting from an initial set of elements. Second, as the approach is attention-based, we can visualize which previous elements the model is attending to predict the next element, thereby providing an interpretable sequence of layout elements. Third, our model can easily scale to support both a large number of element categories and a large number of elements per layout. Finally, the model also produces an embedding for various element categories, which can be used to explore the relationships between the categories. We demonstrate with experiments that our model can produce meaningful layouts in diverse settings such as object bounding boxes in scenes (COCO bounding boxes), documents (PubLayNet), and mobile applications (RICO dataset).
Abstract:We tackle the problem of modeling sequential visual phenomena. Given examples of a phenomena that can be divided into discrete time steps, we aim to take an input from any such time and realize this input at all other time steps in the sequence. Furthermore, we aim to do this without ground-truth aligned sequences -- avoiding the difficulties needed for gathering aligned data. This generalizes the unpaired image-to-image problem from generating pairs to generating sequences. We extend cycle consistency to loop consistency and alleviate difficulties associated with learning in the resulting long chains of computation. We show competitive results compared to existing image-to-image techniques when modeling several different data sets including the Earth's seasons and aging of human faces.
Abstract:Recently, the vision community has shown renewed interest in the effort of panoptic segmentation --- previously known as image parsing. While a large amount of progress has been made within both the instance and semantic segmentation tasks separately, panoptic segmentation implies knowledge of both (countable) "things" and semantic "stuff" within a single output. A common approach involves the fusion of respective instance and semantic segmentations proposals, however, this method has not explicitly addressed the jump from instance segmentation to non-overlapping placement within a single output and often fails to layout overlapping instances adequately. We propose a straightforward extension to the Mask R-CNN framework that is tasked with resolving how two instance masks should overlap one another in the fused output as a binary relation. We show competitive increases in overall panoptic quality (PQ) and particular gains in the "things" portion of the standard panoptic segmentation benchmark, reaching state-of-the-art against methods with comparable architectures.
Abstract:We propose introspective convolutional networks (ICN) that emphasize the importance of having convolutional neural networks empowered with generative capabilities. We employ a reclassification-by-synthesis algorithm to perform training using a formulation stemmed from the Bayes theory. Our ICN tries to iteratively: (1) synthesize pseudo-negative samples; and (2) enhance itself by improving the classification. The single CNN classifier learned is at the same time generative --- being able to directly synthesize new samples within its own discriminative model. We conduct experiments on benchmark datasets including MNIST, CIFAR-10, and SVHN using state-of-the-art CNN architectures, and observe improved classification results.
Abstract:We study unsupervised learning by developing introspective generative modeling (IGM) that attains a generator using progressively learned deep convolutional neural networks. The generator is itself a discriminator, capable of introspection: being able to self-evaluate the difference between its generated samples and the given training data. When followed by repeated discriminative learning, desirable properties of modern discriminative classifiers are directly inherited by the generator. IGM learns a cascade of CNN classifiers using a synthesis-by-classification algorithm. In the experiments, we observe encouraging results on a number of applications including texture modeling, artistic style transferring, face modeling, and semi-supervised learning.