Abstract:This paper addresses the challenge of perceiving complete object shapes through visual perception. While prior studies have demonstrated encouraging outcomes in segmenting the visible parts of objects within a scene, amodal segmentation, in particular, has the potential to allow robots to infer the occluded parts of objects. To this end, this paper introduces a new framework that explores amodal segmentation for robotic grasping in cluttered scenes, thus greatly enhancing robotic grasping abilities. Initially, we use a conventional segmentation algorithm to detect the visible segments of the target object, which provides shape priors for completing the full object mask. Particularly, to explore how to utilize semantic features from RGB images and geometric information from depth images, we propose a Linear-fusion Attention-guided Convolutional Network (LAC-Net). LAC-Net utilizes the linear-fusion strategy to effectively fuse this cross-modal data, and then uses the prior visible mask as attention map to guide the network to focus on target feature locations for further complete mask recovery. Using the amodal mask of the target object provides advantages in selecting more accurate and robust grasp points compared to relying solely on the visible segments. The results on different datasets show that our method achieves state-of-the-art performance. Furthermore, the robot experiments validate the feasibility and robustness of this method in the real world. Our code and demonstrations are available on the project page: https://jrryzh.github.io/LAC-Net.
Abstract:Cross-domain sequential recommenders (CSRs) are gaining considerable research attention as they can capture user sequential preference by leveraging side information from multiple domains. However, these works typically follow an ideal setup, i.e., different domains obey similar data distribution, which ignores the bias brought by asymmetric interaction densities (a.k.a. the inter-domain density bias). Besides, the frequently adopted mechanism (e.g., the self-attention network) in sequence encoder only focuses on the interactions within a local view, which overlooks the global correlations between different training batches. To this end, we propose an External Attention-enhanced Graph Contrastive Learning framework, namely EA-GCL. Specifically, to remove the impact of the inter-domain density bias, an auxiliary Self-Supervised Learning (SSL) task is attached to the traditional graph encoder under a multi-task learning manner. To robustly capture users' behavioral patterns, we develop an external attention-based sequence encoder that contains an MLP-based memory-sharing structure. Unlike the self-attention mechanism, such a structure can effectively alleviate the bias interference from the batch-based training scheme. Extensive experiments on two real-world datasets demonstrate that EA-GCL outperforms several state-of-the-art baselines on CSR tasks. The source codes and relevant datasets are available at https://github.com/HoupingY/EA-GCL.
Abstract:Cross-domain Sequential Recommendation (CSR) is an emerging yet challenging task that depicts the evolution of behavior patterns for overlapped users by modeling their interactions from multiple domains. Existing studies on CSR mainly focus on using composite or in-depth structures that achieve significant improvement in accuracy but bring a huge burden to the model training. Moreover, to learn the user-specific sequence representations, existing works usually adopt the global relevance weighting strategy (e.g., self-attention mechanism), which has quadratic computational complexity. In this work, we introduce a lightweight external attention-enhanced GCN-based framework to solve the above challenges, namely LEA-GCN. Specifically, by only keeping the neighborhood aggregation component and using the Single-Layer Aggregating Protocol (SLAP), our lightweight GCN encoder performs more efficiently to capture the collaborative filtering signals of the items from both domains. To further alleviate the framework structure and aggregate the user-specific sequential pattern, we devise a novel dual-channel External Attention (EA) component, which calculates the correlation among all items via a lightweight linear structure. Extensive experiments are conducted on two real-world datasets, demonstrating that LEA-GCN requires a smaller volume and less training time without affecting the accuracy compared with several state-of-the-art methods.
Abstract:Shared-account Cross-domain Sequential Recommendation (SCSR) is an emerging yet challenging task that simultaneously considers the shared-account and cross-domain characteristics in the sequential recommendation. Existing works on SCSR are mainly based on Recurrent Neural Network (RNN) and Graph Neural Network (GNN) but they ignore the fact that although multiple users share a single account, it is mainly occupied by one user at a time. This observation motivates us to learn a more accurate user-specific account representation by attentively focusing on its recent behaviors. Furthermore, though existing works endow lower weights to irrelevant interactions, they may still dilute the domain information and impede the cross-domain recommendation. To address the above issues, we propose a reinforcement learning-based solution, namely RL-ISN, which consists of a basic cross-domain recommender and a reinforcement learning-based domain filter. Specifically, to model the account representation in the shared-account scenario, the basic recommender first clusters users' mixed behaviors as latent users, and then leverages an attention model over them to conduct user identification. To reduce the impact of irrelevant domain information, we formulate the domain filter as a hierarchical reinforcement learning task, where a high-level task is utilized to decide whether to revise the whole transferred sequence or not, and if it does, a low-level task is further performed to determine whether to remove each interaction within it or not. To evaluate the performance of our solution, we conduct extensive experiments on two real-world datasets, and the experimental results demonstrate the superiority of our RL-ISN method compared with the state-of-the-art recommendation methods.
Abstract:Shared-account Cross-domain Sequential Recommendation (SCSR) task aims to recommend the next item via leveraging the mixed user behaviors in multiple domains. It is gaining immense research attention as more and more users tend to sign up on different platforms and share accounts with others to access domain-specific services. Existing works on SCSR mainly rely on mining sequential patterns via Recurrent Neural Network (RNN)-based models, which suffer from the following limitations: 1) RNN-based methods overwhelmingly target discovering sequential dependencies in single-user behaviors. They are not expressive enough to capture the relationships among multiple entities in SCSR. 2) All existing methods bridge two domains via knowledge transfer in the latent space, and ignore the explicit cross-domain graph structure. 3) None existing studies consider the time interval information among items, which is essential in the sequential recommendation for characterizing different items and learning discriminative representations for them. In this work, we propose a new graph-based solution, namely TiDA-GCN, to address the above challenges. Specifically, we first link users and items in each domain as a graph. Then, we devise a domain-aware graph convolution network to learn userspecific node representations. To fully account for users' domainspecific preferences on items, two effective attention mechanisms are further developed to selectively guide the message passing process. Moreover, to further enhance item- and account-level representation learning, we incorporate the time interval into the message passing, and design an account-aware self-attention module for learning items' interactive characteristics. Experiments demonstrate the superiority of our proposed method from various aspects.