Abstract:In this work, we present a novel method, named AV2vec, for learning audio-visual speech representations by multimodal self-distillation. AV2vec has a student and a teacher module, in which the student performs a masked latent feature regression task using the multimodal target features generated online by the teacher. The parameters of the teacher model are a momentum update of the student. Since our target features are generated online, AV2vec needs no iteration step like AV-HuBERT and the total training time cost is reduced to less than one-fifth. We further propose AV2vec-MLM in this study, which augments AV2vec with a masked language model (MLM)-style loss using multitask learning. Our experimental results show that AV2vec achieved comparable performance to the AV-HuBERT baseline. When combined with an MLM-style loss, AV2vec-MLM outperformed baselines and achieved the best performance on the downstream tasks.
Abstract:Lip region-of-interest (ROI) is conventionally used for visual input in the lipreading task. Few works have adopted the entire face as visual input because lip-excluded parts of the face are usually considered to be redundant and irrelevant to visual speech recognition. However, faces contain much more detailed information than lips, such as speakers' head pose, emotion, identity etc. We argue that such information might benefit visual speech recognition if a powerful feature extractor employing the entire face is trained. In this work, we propose to adopt the entire face for lipreading with self-supervised learning. AV-HuBERT, an audio-visual multi-modal self-supervised learning framework, was adopted in our experiments. Our experimental results showed that adopting the entire face achieved 16% relative word error rate (WER) reduction on the lipreading task, compared with the baseline method using lip as visual input. Without self-supervised pretraining, the model with face input achieved a higher WER than that using lip input in the case of limited training data (30 hours), while a slightly lower WER when using large amount of training data (433 hours).
Abstract:We present the Tongue and Lips corpus (TaL), a multi-speaker corpus of audio, ultrasound tongue imaging, and lip videos. TaL consists of two parts: TaL1 is a set of six recording sessions of one professional voice talent, a male native speaker of English; TaL80 is a set of recording sessions of 81 native speakers of English without voice talent experience. Overall, the corpus contains 24 hours of parallel ultrasound, video, and audio data, of which approximately 13.5 hours are speech. This paper describes the corpus and presents benchmark results for the tasks of speech recognition, speech synthesis (articulatory-to-acoustic mapping), and automatic synchronisation of ultrasound to audio. The TaL corpus is publicly available under the CC BY-NC 4.0 license.
Abstract:This paper proposes a forward attention method for the sequenceto- sequence acoustic modeling of speech synthesis. This method is motivated by the nature of the monotonic alignment from phone sequences to acoustic sequences. Only the alignment paths that satisfy the monotonic condition are taken into consideration at each decoder timestep. The modified attention probabilities at each timestep are computed recursively using a forward algorithm. A transition agent for forward attention is further proposed, which helps the attention mechanism to make decisions whether to move forward or stay at each decoder timestep. Experimental results show that the proposed forward attention method achieves faster convergence speed and higher stability than the baseline attention method. Besides, the method of forward attention with transition agent can also help improve the naturalness of synthetic speech and control the speed of synthetic speech effectively.