Abstract:This paper introduces MetaBGM, a groundbreaking framework for generating background music that adapts to dynamic scenes and real-time user interactions. We define multi-scene as variations in environmental contexts, such as transitions in game settings or movie scenes. To tackle the challenge of converting backend data into music description texts for audio generation models, MetaBGM employs a novel two-stage generation approach that transforms continuous scene and user state data into these texts, which are then fed into an audio generation model for real-time soundtrack creation. Experimental results demonstrate that MetaBGM effectively generates contextually relevant and dynamic background music for interactive applications.
Abstract:Security code review aims to combine automated tools and manual efforts to detect security defects during development. The rapid development of Large Language Models (LLMs) has shown promising potential in software development, as well as opening up new possibilities in automated security code review. To explore the challenges of applying LLMs in practical code review for security defect detection, this study compared the detection performance of three state-of-the-art LLMs (Gemini Pro, GPT-4, and GPT-3.5) under five prompts on 549 code files that contain security defects from real-world code reviews. Through analyzing 82 responses generated by the best-performing LLM-prompt combination based on 100 randomly selected code files, we extracted and categorized quality problems present in these responses into 5 themes and 16 categories. Our results indicate that the responses produced by LLMs often suffer from verbosity, vagueness, and incompleteness, highlighting the necessity to enhance their conciseness, understandability, and compliance to security defect detection. This work reveals the deficiencies of LLM-generated responses in security code review and paves the way for future optimization of LLMs towards this task.
Abstract:Although the majority of recent autonomous driving systems concentrate on developing perception methods based on ego-vehicle sensors, there is an overlooked alternative approach that involves leveraging intelligent roadside cameras to help extend the ego-vehicle perception ability beyond the visual range. We discover that most existing monocular 3D object detectors rely on the ego-vehicle prior assumption that the optical axis of the camera is parallel to the ground. However, the roadside camera is installed on a pole with a pitched angle, which makes the existing methods not optimal for roadside scenes. In this paper, we introduce a novel framework for Roadside Monocular 3D object detection with ground-aware embeddings, named MonoGAE. Specifically, the ground plane is a stable and strong prior knowledge due to the fixed installation of cameras in roadside scenarios. In order to reduce the domain gap between the ground geometry information and high-dimensional image features, we employ a supervised training paradigm with a ground plane to predict high-dimensional ground-aware embeddings. These embeddings are subsequently integrated with image features through cross-attention mechanisms. Furthermore, to improve the detector's robustness to the divergences in cameras' installation poses, we replace the ground plane depth map with a novel pixel-level refined ground plane equation map. Our approach demonstrates a substantial performance advantage over all previous monocular 3D object detectors on widely recognized 3D detection benchmarks for roadside cameras. The code and pre-trained models will be released soon.
Abstract:Compared with traditional sentence-level relation extraction, document-level relation extraction is a more challenging task where an entity in a document may be mentioned multiple times and associated with multiple relations. However, most methods of document-level relation extraction do not distinguish between mention-level features and entity-level features, and just apply simple pooling operation for aggregating mention-level features into entity-level features. As a result, the distinct semantics between the different mentions of an entity are overlooked. To address this problem, we propose RSMAN in this paper which performs selective attentions over different entity mentions with respect to candidate relations. In this manner, the flexible and relation-specific representations of entities are obtained which indeed benefit relation classification. Our extensive experiments upon two benchmark datasets show that our RSMAN can bring significant improvements for some backbone models to achieve state-of-the-art performance, especially when an entity have multiple mentions in the document.