Abstract:This paper introduces MetaBGM, a groundbreaking framework for generating background music that adapts to dynamic scenes and real-time user interactions. We define multi-scene as variations in environmental contexts, such as transitions in game settings or movie scenes. To tackle the challenge of converting backend data into music description texts for audio generation models, MetaBGM employs a novel two-stage generation approach that transforms continuous scene and user state data into these texts, which are then fed into an audio generation model for real-time soundtrack creation. Experimental results demonstrate that MetaBGM effectively generates contextually relevant and dynamic background music for interactive applications.
Abstract:Amid the rising intersection of generative AI and human artistic processes, this study probes the critical yet less-explored terrain of alignment in human-centric automatic song composition. We propose a novel task of Colloquial Description-to-Song Generation, which focuses on aligning the generated content with colloquial human expressions. This task is aimed at bridging the gap between colloquial language understanding and auditory expression within an AI model, with the ultimate goal of creating songs that accurately satisfy human auditory expectations and structurally align with musical norms. Current datasets are limited due to their narrow descriptive scope, semantic gaps and inaccuracies. To overcome data scarcity in this domain, we present the Caichong Music Dataset (CaiMD). CaiMD is manually annotated by both professional musicians and amateurs, offering diverse perspectives and a comprehensive understanding of colloquial descriptions. Unlike existing datasets pre-set with expert annotations or auto-generated ones with inherent biases, CaiMD caters more sufficiently to our purpose of aligning AI-generated music with widespread user-desired results. Moreover, we propose an innovative single-stage framework called MuDiT/MuSiT for enabling effective human-machine alignment in song creation. This framework not only achieves cross-modal comprehension between colloquial language and auditory music perceptions but also ensures generated songs align with user-desired results. MuDiT/MuSiT employs one DiT/SiT model for end-to-end generation of musical components like melody, harmony, rhythm, vocals, and instrumentation. The approach ensures harmonious sonic cohesiveness amongst all generated musical components, facilitating better resonance with human auditory expectations.