Abstract:This paper presents a speech recognition system developed by the Transsion Speech Understanding Processing Team (TSUP) for the ASRU 2023 MADASR Challenge. The system focuses on adapting ASR models for low-resource Indian languages and covers all four tracks of the challenge. For tracks 1 and 2, the acoustic model utilized a squeezeformer encoder and bidirectional transformer decoder with joint CTC-Attention training loss. Additionally, an external KenLM language model was used during TLG beam search decoding. For tracks 3 and 4, pretrained IndicWhisper models were employed and finetuned on both the challenge dataset and publicly available datasets. The whisper beam search decoding was also modified to support an external KenLM language model, which enabled better utilization of the additional text provided by the challenge. The proposed method achieved word error rates (WER) of 24.17%, 24.43%, 15.97%, and 15.97% for Bengali language in the four tracks, and WER of 19.61%, 19.54%, 15.48%, and 15.48% for Bhojpuri language in the four tracks. These results demonstrate the effectiveness of the proposed method.
Abstract:Entity alignment (EA) aims to find entities in different knowledge graphs (KGs) that refer to the same object in the real world. Recent studies incorporate temporal information to augment the representations of KGs. The existing methods for EA between temporal KGs (TKGs) utilize a time-aware attention mechanism to incorporate relational and temporal information into entity embeddings. The approaches outperform the previous methods by using temporal information. However, we believe that it is not necessary to learn the embeddings of temporal information in KGs since most TKGs have uniform temporal representations. Therefore, we propose a simple graph neural network (GNN) model combined with a temporal information matching mechanism, which achieves better performance with less time and fewer parameters. Furthermore, since alignment seeds are difficult to label in real-world applications, we also propose a method to generate unsupervised alignment seeds via the temporal information of TKG. Extensive experiments on public datasets indicate that our supervised method significantly outperforms the previous methods and the unsupervised one has competitive performance.
Abstract:Pun location is to identify the punning word (usually a word or a phrase that makes the text ambiguous) in a given short text, and pun interpretation is to find out two different meanings of the punning word. Most previous studies adopt limited word senses obtained by WSD(Word Sense Disambiguation) technique or pronunciation information in isolation to address pun location. For the task of pun interpretation, related work pays attention to various WSD algorithms. In this paper, a model called DANN (Dual-Attentive Neural Network) is proposed for pun location, effectively integrates word senses and pronunciation with context information to address two kinds of pun at the same time. Furthermore, we treat pun interpretation as a classification task and construct pungloss pairs as processing data to solve this task. Experiments on the two benchmark datasets show that our proposed methods achieve new state-of-the-art results. Our source code is available in the public code repository.