Abstract:With global urbanization, the focus on sustainable cities has largely grown, driving research into equity, resilience, and urban planning, which often relies on mobility data. The rise of web-based apps and mobile devices has provided valuable user data for mobility-related research. However, real-world mobility data is costly and raises privacy concerns. To protect privacy while retaining key features of real-world movement, the demand for synthetic data has steadily increased. Recent advances in diffusion models have shown great potential for mobility trajectory generation due to their ability to model randomness and uncertainty. However, existing approaches often directly apply identically distributed (i.i.d.) noise sampling from image generation techniques, which fail to account for the spatiotemporal correlations and social interactions that shape urban mobility patterns. In this paper, we propose CoDiffMob, a diffusion method for urban mobility generation with collaborative noise priors, we emphasize the critical role of noise in diffusion models for generating mobility data. By leveraging both individual movement characteristics and population-wide dynamics, we construct novel collaborative noise priors that provide richer and more informative guidance throughout the generation process. Extensive experiments demonstrate the superiority of our method, with generated data accurately capturing both individual preferences and collective patterns, achieving an improvement of over 32\%. Furthermore, it can effectively replace web-derived mobility data to better support downstream applications, while safeguarding user privacy and fostering a more secure and ethical web. This highlights its tremendous potential for applications in sustainable city-related research.
Abstract:This research tackles the challenges of estimating Building-Integrated Photovoltaics (BIPV) potential across various temporal and spatial scales, accounting for different geographical climates and urban morphology. We introduce a holistic methodology for evaluating BIPV potential, integrating 3D building footprint models with diverse meteorological data sources to account for dynamic shadow effects. The approach enables the assessment of PV potential on facades and rooftops at different levels-individual buildings, urban blocks, and cities globally. Through an analysis of 120 typical cities, we highlight the importance of 3D building forms, cityscape morphology, and geographic positioning in measuring BIPV potential at various levels. In particular, our simulation study reveals that among cities with optimal facade PV performance, the average ratio of facade PV potential to rooftop PV potential is approximately 68.2%. Additionally, approximately 17.5% of the analyzed samples demonstrate even higher facade PV potentials compared to rooftop installations. This finding underscores the strategic value of incorporating facade PV applications into urban sustainable energy systems.
Abstract:Citation networks are critical in modern science, and predicting which previous papers (candidates) will a new paper (query) cite is a critical problem. However, the roles of a paper's citations vary significantly, ranging from foundational knowledge basis to superficial contexts. Distinguishing these roles requires a deeper understanding of the logical relationships among papers, beyond simple edges in citation networks. The emergence of LLMs with textual reasoning capabilities offers new possibilities for discerning these relationships, but there are two major challenges. First, in practice, a new paper may select its citations from gigantic existing papers, where the texts exceed the context length of LLMs. Second, logical relationships between papers are implicit, and directly prompting an LLM to predict citations may result in surface-level textual similarities rather than the deeper logical reasoning. In this paper, we introduce the novel concept of core citation, which identifies the critical references that go beyond superficial mentions. Thereby, we elevate the citation prediction task from a simple binary classification to distinguishing core citations from both superficial citations and non-citations. To address this, we propose $\textbf{HLM-Cite}$, a $\textbf{H}$ybrid $\textbf{L}$anguage $\textbf{M}$odel workflow for citation prediction, which combines embedding and generative LMs. We design a curriculum finetune procedure to adapt a pretrained text embedding model to coarsely retrieve high-likelihood core citations from vast candidates and then design an LLM agentic workflow to rank the retrieved papers through one-shot reasoning, revealing the implicit relationships among papers. With the pipeline, we can scale the candidate sets to 100K papers. We evaluate HLM-Cite across 19 scientific fields, demonstrating a 17.6% performance improvement comparing SOTA methods.
Abstract:With the rapid development of urban transportation and the continuous advancement in autonomous vehicles, the demand for safely and efficiently testing autonomous driving and traffic optimization algorithms arises, which needs accurate modeling of large-scale urban traffic scenarios. Existing traffic simulation systems encounter two significant limitations. Firstly, they often rely on open-source datasets or manually crafted maps, constraining the scale of simulations. Secondly, vehicle models within these systems tend to be either oversimplified or lack controllability, compromising the authenticity and diversity of the simulations. In this paper, we propose LCSim, a large-scale controllable traffic simulator. LCSim provides map tools for constructing unified high-definition map (HD map) descriptions from open-source datasets including Waymo and Argoverse or publicly available data sources like OpenStreetMap to scale up the simulation scenarios. Also, we integrate diffusion-based traffic simulation into the simulator for realistic and controllable microscopic traffic flow modeling. By leveraging these features, LCSim provides realistic and diverse virtual traffic environments. Code and Demos are available at https://github.com/tsinghua-fib-lab/LCSim.
Abstract:Traffic signal control (TSC) is a promising low-cost measure to enhance transportation efficiency without affecting existing road infrastructure. While various reinforcement learning-based TSC methods have been proposed and experimentally outperform conventional rule-based methods, none of them has been deployed in the real world. An essential gap lies in the oversimplification of the scenarios in terms of intersection heterogeneity and road network intricacy. To make TSC applicable in urban traffic management, we target TSC coordination in city-scale high-authenticity road networks, aiming to solve the three unique and important challenges: city-level scalability, heterogeneity of real-world intersections, and effective coordination among intricate neighbor connections. Since optimizing multiple agents in a parameter-sharing paradigm can boost the training efficiency and help achieve scalability, we propose our method, CityLight, based on the well-acknowledged optimization framework, parameter-sharing MAPPO. To ensure the unified policy network can learn to fit large-scale heterogeneous intersections and tackle the intricate between-neighbor coordination, CityLight proposes a universal representation module that consists of two key designs: heterogeneous intersection alignment and neighborhood impact alignment for coordination. To further boost coordination, CityLight adopts neighborhood-integrated rewards to transition from achieving local optimal to global optimal. Extensive experiments on datasets with hundreds to tens of thousands of real-world intersections and authentic traffic demands validate the surprising effectiveness and generalizability of CityLight, with an overall performance gain of 11.66% and a 22.59% improvement in transfer scenarios in terms of throughput.
Abstract:Modern diffusion-based image generative models have made significant progress and become promising to enrich training data for the object detection task. However, the generation quality and the controllability for complex scenes containing multi-class objects and dense objects with occlusions remain limited. This paper presents ODGEN, a novel method to generate high-quality images conditioned on bounding boxes, thereby facilitating data synthesis for object detection. Given a domain-specific object detection dataset, we first fine-tune a pre-trained diffusion model on both cropped foreground objects and entire images to fit target distributions. Then we propose to control the diffusion model using synthesized visual prompts with spatial constraints and object-wise textual descriptions. ODGEN exhibits robustness in handling complex scenes and specific domains. Further, we design a dataset synthesis pipeline to evaluate ODGEN on 7 domain-specific benchmarks to demonstrate its effectiveness. Adding training data generated by ODGEN improves up to 25.3% mAP@.50:.95 with object detectors like YOLOv5 and YOLOv7, outperforming prior controllable generative methods. In addition, we design an evaluation protocol based on COCO-2014 to validate ODGEN in general domains and observe an advantage up to 5.6% in mAP@.50:.95 against existing methods.
Abstract:Large-scale text-to-image diffusion models have achieved great success in synthesizing high-quality and diverse images given target text prompts. Despite the revolutionary image generation ability, current state-of-the-art models still struggle to deal with multi-concept generation accurately in many cases. This phenomenon is known as ``concept bleeding" and displays as the unexpected overlapping or merging of various concepts. This paper presents a general approach for text-to-image diffusion models to address the mutual interference between different subjects and their attachments in complex scenes, pursuing better text-image consistency. The core idea is to isolate the synthesizing processes of different concepts. We propose to bind each attachment to corresponding subjects separately with split text prompts. Besides, we introduce a revision method to fix the concept bleeding problem in multi-subject synthesis. We first depend on pre-trained object detection and segmentation models to obtain the layouts of subjects. Then we isolate and resynthesize each subject individually with corresponding text prompts to avoid mutual interference. Overall, we achieve a training-free strategy, named Isolated Diffusion, to optimize multi-concept text-to-image synthesis. It is compatible with the latest Stable Diffusion XL (SDXL) and prior Stable Diffusion (SD) models. We compare our approach with alternative methods using a variety of multi-concept text prompts and demonstrate its effectiveness with clear advantages in text-image consistency and user study.
Abstract:Accounting for over 20% of the total carbon emissions, the precise estimation of on-road transportation carbon emissions is crucial for carbon emission monitoring and efficient mitigation policy formulation. However, existing estimation methods typically depend on hard-to-collect individual statistics of vehicle miles traveled to calculate emissions, thereby suffering from high data collection difficulty. To relieve this issue by utilizing the strong pattern recognition of artificial intelligence, we incorporate two sources of open data representative of the transportation demand and capacity factors, the origin-destination (OD) flow data and the road network data, to build a hierarchical heterogeneous graph learning method for on-road carbon emission estimation (HENCE). Specifically, a hierarchical graph consisting of the road network level, community level, and region level is constructed to model the multi-scale road network-based connectivity and travel connection between spatial areas. Heterogeneous graphs consisting of OD links and spatial links are further built at both the community level and region level to capture the intrinsic interactions between travel demand and road network accessibility. Extensive experiments on two large-scale real-world datasets demonstrate HENCE's effectiveness and superiority with R-squared exceeding 0.75 and outperforming baselines by 9.60% on average, validating its success in pioneering the use of artificial intelligence to empower carbon emission management and sustainability development. The implementation codes are available at this link: https://github.com/tsinghua-fib-lab/HENCE.
Abstract:The quadratic complexity of self-attention in Transformers has hindered the processing of long text. To alleviate this problem, previous works have proposed to sparsify the attention matrix, taking advantage of the observation that crucial information about a token can be derived from its neighbors. These methods typically combine one or another form of local attention and global attention. Such combinations introduce abrupt changes in contextual granularity when going from local to global, which may be undesirable. We believe that a smoother transition could potentially enhance model's ability to capture long-context dependencies. In this study, we introduce Fovea Transformer, a long-context focused transformer that addresses the challenges of capturing global dependencies while maintaining computational efficiency. To achieve this, we construct a multi-scale tree from the input sequence, and use representations of context tokens with a progressively coarser granularity in the tree, as their distance to the query token increases. We evaluate our model on three long-context summarization tasks\footnote{Our code is publicly available at: \textit{https://github.com/ZiweiHe/Fovea-Transformer}}. It achieves state-of-the-art performance on two of them, and competitive results on the third with mixed improvement and setback of the evaluation metrics.
Abstract:Denoising diffusion probabilistic models (DDPMs) have been proven capable of synthesizing high-quality images with remarkable diversity when trained on large amounts of data. Typical diffusion models and modern large-scale conditional generative models like text-to-image generative models are vulnerable to overfitting when fine-tuned on extremely limited data. Existing works have explored subject-driven generation using a reference set containing a few images. However, few prior works explore DDPM-based domain-driven generation, which aims to learn the common features of target domains while maintaining diversity. This paper proposes a novel DomainStudio approach to adapt DDPMs pre-trained on large-scale source datasets to target domains using limited data. It is designed to keep the diversity of subjects provided by source domains and get high-quality and diverse adapted samples in target domains. We propose to keep the relative distances between adapted samples to achieve considerable generation diversity. In addition, we further enhance the learning of high-frequency details for better generation quality. Our approach is compatible with both unconditional and conditional diffusion models. This work makes the first attempt to realize unconditional few-shot image generation with diffusion models, achieving better quality and greater diversity than current state-of-the-art GAN-based approaches. Moreover, this work also significantly relieves overfitting for conditional generation and realizes high-quality domain-driven generation, further expanding the applicable scenarios of modern large-scale text-to-image models.