Abstract:Backdoor attacks have emerged as a primary threat to (pre-)training and deployment of deep neural networks (DNNs). While backdoor attacks have been extensively studied in a body of works, most of them were focused on single-trigger attacks that poison a dataset using a single type of trigger. Arguably, real-world backdoor attacks can be much more complex, e.g., the existence of multiple adversaries for the same dataset if it is of high value. In this work, we investigate the practical threat of backdoor attacks under the setting of \textbf{multi-trigger attacks} where multiple adversaries leverage different types of triggers to poison the same dataset. By proposing and investigating three types of multi-trigger attacks, including parallel, sequential, and hybrid attacks, we provide a set of important understandings of the coexisting, overwriting, and cross-activating effects between different triggers on the same dataset. Moreover, we show that single-trigger attacks tend to cause overly optimistic views of the security of current defense techniques, as all examined defense methods struggle to defend against multi-trigger attacks. Finally, we create a multi-trigger backdoor poisoning dataset to help future evaluation of backdoor attacks and defenses. Although our work is purely empirical, we hope it can help steer backdoor research toward more realistic settings.
Abstract:Spinal degeneration plagues many elders, office workers, and even the younger generations. Effective pharmic or surgical interventions can help relieve degenerative spine conditions. However, the traditional diagnosis procedure is often too laborious. Clinical experts need to detect discs and vertebrae from spinal magnetic resonance imaging (MRI) or computed tomography (CT) images as a preliminary step to perform pathological diagnosis or preoperative evaluation. Machine learning systems have been developed to aid this procedure generally following a two-stage methodology: first perform anatomical localization, then pathological classification. Towards more efficient and accurate diagnosis, we propose a one-stage detection framework termed SpineOne to simultaneously localize and classify degenerative discs and vertebrae from MRI slices. SpineOne is built upon the following three key techniques: 1) a new design of the keypoint heatmap to facilitate simultaneous keypoint localization and classification; 2) the use of attention modules to better differentiate the representations between discs and vertebrae; and 3) a novel gradient-guided objective association mechanism to associate multiple learning objectives at the later training stage. Empirical results on the Spinal Disease Intelligent Diagnosis Tianchi Competition (SDID-TC) dataset of 550 exams demonstrate that our approach surpasses existing methods by a large margin.
Abstract:Bounding box (bbox) regression is a fundamental task in computer vision. So far, the most commonly used loss functions for bbox regression are the Intersection over Union (IoU) loss and its variants. In this paper, we generalize existing IoU-based losses to a new family of power IoU losses that have a power IoU term and an additional power regularization term with a single power parameter $\alpha$. We call this new family of losses the $\alpha$-IoU losses and analyze properties such as order preservingness and loss/gradient reweighting. Experiments on multiple object detection benchmarks and models demonstrate that $\alpha$-IoU losses, 1) can surpass existing IoU-based losses by a noticeable performance margin; 2) offer detectors more flexibility in achieving different levels of bbox regression accuracy by modulating $\alpha$; and 3) are more robust to small datasets and noisy bboxes.
Abstract:Semantic segmentation is one of the key problems in the field of computer vision, as it enables computer image understanding. However, most research and applications of semantic segmentation focus on addressing unique segmentation problems, where there is only one gold standard segmentation result for every input image. This may not be true in some problems, e.g., medical applications. We may have non-unique segmentation annotations as different surgeons may perform successful surgeries for the same patient in slightly different ways. To comprehensively learn non-unique segmentation tasks, we propose the reward-penalty Dice loss (RPDL) function as the optimization objective for deep convolutional neural networks (DCNN). RPDL is capable of helping DCNN learn non-unique segmentation by enhancing common regions and penalizing outside ones. Experimental results show that RPDL improves the performance of DCNN models by up to 18.4% compared with other loss functions on our collected surgical dataset.