Jack
Abstract:Modern artificial intelligence (AI) systems are powered by foundation models. This paper presents a new set of foundation models, called Llama 3. It is a herd of language models that natively support multilinguality, coding, reasoning, and tool usage. Our largest model is a dense Transformer with 405B parameters and a context window of up to 128K tokens. This paper presents an extensive empirical evaluation of Llama 3. We find that Llama 3 delivers comparable quality to leading language models such as GPT-4 on a plethora of tasks. We publicly release Llama 3, including pre-trained and post-trained versions of the 405B parameter language model and our Llama Guard 3 model for input and output safety. The paper also presents the results of experiments in which we integrate image, video, and speech capabilities into Llama 3 via a compositional approach. We observe this approach performs competitively with the state-of-the-art on image, video, and speech recognition tasks. The resulting models are not yet being broadly released as they are still under development.
Abstract:We present the HPLT (High Performance Language Technologies) language resources, a new massive multilingual dataset including both monolingual and bilingual corpora extracted from CommonCrawl and previously unused web crawls from the Internet Archive. We describe our methods for data acquisition, management and processing of large corpora, which rely on open-source software tools and high-performance computing. Our monolingual collection focuses on low- to medium-resourced languages and covers 75 languages and a total of ~5.6 trillion word tokens de-duplicated on the document level. Our English-centric parallel corpus is derived from its monolingual counterpart and covers 18 language pairs and more than 96 million aligned sentence pairs with roughly 1.4 billion English tokens. The HPLT language resources are one of the largest open text corpora ever released, providing a great resource for language modeling and machine translation training. We publicly release the corpora, the software, and the tools used in this work.
Abstract:Developing high quality machine translation systems is a labour intensive, challenging and confusing process for newcomers to the field. We present a pair of tools OpusCleaner and OpusTrainer that aim to simplify the process, reduce the amount of work and lower the entry barrier for newcomers. OpusCleaner is a data downloading, cleaning, and proprocessing toolkit. It is designed to allow researchers to quickly download, visualise and preprocess bilingual (or monolingual) data that comes from many different sources, each of them with different quality, issues, and unique filtering/preprocessing requirements. OpusTrainer is a data scheduling and data augmenting tool aimed at building large scale, robust machine translation systems and large language models. It features deterministic data mixing from many different sources, on-the-fly data augmentation and more. Using these tools, we showcase how we can use it to create high quality machine translation model robust to noisy user input; multilingual models and terminology aware models.