Abstract:Accurate and efficient climate simulations are crucial for understanding Earth's evolving climate. However, current general circulation models (GCMs) face challenges in capturing unresolved physical processes, such as cloud and convection. A common solution is to adopt cloud resolving models, that provide more accurate results than the standard subgrid parametrisation schemes typically used in GCMs. However, cloud resolving models, also referred to as super paramtetrizations, remain computationally prohibitive. Hybrid modeling, which integrates deep learning with equation-based GCMs, offers a promising alternative but often struggles with long-term stability and accuracy issues. In this work, we find that water vapor oversaturation during condensation is a key factor compromising the stability of hybrid models. To address this, we introduce CondensNet, a novel neural network architecture that embeds a self-adaptive physical constraint to correct unphysical condensation processes. CondensNet effectively mitigates water vapor oversaturation, enhancing simulation stability while maintaining accuracy and improving computational efficiency compared to super parameterization schemes. We integrate CondensNet into a GCM to form PCNN-GCM (Physics-Constrained Neural Network GCM), a hybrid deep learning framework designed for long-term stable climate simulations in real-world conditions, including ocean and land. PCNN-GCM represents a significant milestone in hybrid climate modeling, as it shows a novel way to incorporate physical constraints adaptively, paving the way for accurate, lightweight, and stable long-term climate simulations.
Abstract:Accurate surface solar irradiance (SSI) forecasting is essential for optimizing renewable energy systems, particularly in the context of long-term energy planning on a global scale. This paper presents a pioneering approach to solar radiation forecasting that leverages recent advancements in numerical weather prediction (NWP) and data-driven machine learning weather models. These advances facilitate long, stable rollouts and enable large ensemble forecasts, enhancing the reliability of predictions. Our flexible model utilizes variables forecast by these NWP and AI weather models to estimate 6-hourly SSI at global scale. Developed using NVIDIA Modulus, our model represents the first adaptive global framework capable of providing long-term SSI forecasts. Furthermore, it can be fine-tuned using satellite data, which significantly enhances its performance in the fine-tuned regions, while maintaining accuracy elsewhere. The improved accuracy of these forecasts has substantial implications for the integration of solar energy into power grids, enabling more efficient energy management and contributing to the global transition to renewable energy sources.