Abstract:Text-to-Image (T2I) diffusion models have rapidly advanced, enabling the generation of high-quality images that align closely with textual descriptions. However, this progress has also raised concerns about their misuse for propaganda and other malicious activities. Recent studies reveal that attackers can embed biases into these models through simple fine-tuning, causing them to generate targeted imagery when triggered by specific phrases. This underscores the potential for T2I models to act as tools for disseminating propaganda, producing images aligned with an attacker's objective for end-users. Building on this concept, we introduce FameBias, a T2I biasing attack that manipulates the embeddings of input prompts to generate images featuring specific public figures. Unlike prior methods, Famebias operates solely on the input embedding vectors without requiring additional model training. We evaluate FameBias comprehensively using Stable Diffusion V2, generating a large corpus of images based on various trigger nouns and target public figures. Our experiments demonstrate that FameBias achieves a high attack success rate while preserving the semantic context of the original prompts across multiple trigger-target pairs.
Abstract:Recent advances in large text-conditional image generative models such as Stable Diffusion, Midjourney, and DALL-E 3 have revolutionized the field of image generation, allowing users to produce high-quality, realistic images from textual prompts. While these developments have enhanced artistic creation and visual communication, they also present an underexplored attack opportunity: the possibility of inducing biases by an adversary into the generated images for malicious intentions, e.g., to influence society and spread propaganda. In this paper, we demonstrate the possibility of such a bias injection threat by an adversary who backdoors such models with a small number of malicious data samples; the implemented backdoor is activated when special triggers exist in the input prompt of the backdoored models. On the other hand, the model's utility is preserved in the absence of the triggers, making the attack highly undetectable. We present a novel framework that enables efficient generation of poisoning samples with composite (multi-word) triggers for such an attack. Our extensive experiments using over 1 million generated images and against hundreds of fine-tuned models demonstrate the feasibility of the presented backdoor attack. We illustrate how these biases can bypass conventional detection mechanisms, highlighting the challenges in proving the existence of biases within operational constraints. Our cost analysis confirms the low financial barrier to executing such attacks, underscoring the need for robust defensive strategies against such vulnerabilities in text-to-image generation models.
Abstract:We introduce One-Shot Label-Only (OSLO) membership inference attacks (MIAs), which accurately infer a given sample's membership in a target model's training set with high precision using just \emph{a single query}, where the target model only returns the predicted hard label. This is in contrast to state-of-the-art label-only attacks which require $\sim6000$ queries, yet get attack precisions lower than OSLO's. OSLO leverages transfer-based black-box adversarial attacks. The core idea is that a member sample exhibits more resistance to adversarial perturbations than a non-member. We compare OSLO against state-of-the-art label-only attacks and demonstrate that, despite requiring only one query, our method significantly outperforms previous attacks in terms of precision and true positive rate (TPR) under the same false positive rates (FPR). For example, compared to previous label-only MIAs, OSLO achieves a TPR that is 7$\times$ to 28$\times$ stronger under a 0.1\% FPR on CIFAR10 for a ResNet model. We evaluated multiple defense mechanisms against OSLO.
Abstract:Multimodal machine learning, especially text-to-image models like Stable Diffusion and DALL-E 3, has gained significance for transforming text into detailed images. Despite their growing use and remarkable generative capabilities, there is a pressing need for a detailed examination of these models' behavior, particularly with respect to memorization. Historically, memorization in machine learning has been context-dependent, with diverse definitions emerging from classification tasks to complex models like Large Language Models (LLMs) and Diffusion models. Yet, a definitive concept of memorization that aligns with the intricacies of text-to-image synthesis remains elusive. This understanding is vital as memorization poses privacy risks yet is essential for meeting user expectations, especially when generating representations of underrepresented entities. In this paper, we introduce a specialized definition of memorization tailored to text-to-image models, categorizing it into three distinct types according to user expectations. We closely examine the subtle distinctions between intended and unintended memorization, emphasizing the importance of balancing user privacy with the generative quality of the model outputs. Using the Stable Diffusion model, we offer examples to validate our memorization definitions and clarify their application.
Abstract:Diffusion-based models, such as the Stable Diffusion model, have revolutionized text-to-image synthesis with their ability to produce high-quality, high-resolution images. These advancements have prompted significant progress in image generation and editing tasks. However, these models also raise concerns due to their tendency to memorize and potentially replicate exact training samples, posing privacy risks and enabling adversarial attacks. Duplication in training datasets is recognized as a major factor contributing to memorization, and various forms of memorization have been studied so far. This paper focuses on two distinct and underexplored types of duplication that lead to replication during inference in diffusion-based models, particularly in the Stable Diffusion model. We delve into these lesser-studied duplication phenomena and their implications through two case studies, aiming to contribute to the safer and more responsible use of generative models in various applications.
Abstract:Over the past few years, the field of adversarial attack received numerous attention from various researchers with the help of successful attack success rate against well-known deep neural networks that were acknowledged to achieve high classification ability in various tasks. However, majority of the experiments were completed under a single model, which we believe it may not be an ideal case in a real-life situation. In this paper, we introduce a novel federated adversarial training method for smart home face recognition, named FLATS, where we observed some interesting findings that may not be easily noticed in a traditional adversarial attack to federated learning experiments. By applying different variations to the hyperparameters, we have spotted that our method can make the global model to be robust given a starving federated environment. Our code can be found on https://github.com/jcroh0508/FLATS.
Abstract:Pre-trained language models allowed us to process downstream tasks with the help of fine-tuning, which aids the model to achieve fairly high accuracy in various Natural Language Processing (NLP) tasks. Such easily-downloaded language models from various websites empowered the public users as well as some major institutions to give a momentum to their real-life application. However, it was recently proven that models become extremely vulnerable when they are backdoor attacked with trigger-inserted poisoned datasets by malicious users. The attackers then redistribute the victim models to the public to attract other users to use them, where the models tend to misclassify when certain triggers are detected within the training sample. In this paper, we will introduce a novel improved textual backdoor defense method, named MSDT, that outperforms the current existing defensive algorithms in specific datasets. The experimental results illustrate that our method can be effective and constructive in terms of defending against backdoor attack in text domain. Code is available at https://github.com/jcroh0508/MSDT.