Abstract:Over the past few years, the field of adversarial attack received numerous attention from various researchers with the help of successful attack success rate against well-known deep neural networks that were acknowledged to achieve high classification ability in various tasks. However, majority of the experiments were completed under a single model, which we believe it may not be an ideal case in a real-life situation. In this paper, we introduce a novel federated adversarial training method for smart home face recognition, named FLATS, where we observed some interesting findings that may not be easily noticed in a traditional adversarial attack to federated learning experiments. By applying different variations to the hyperparameters, we have spotted that our method can make the global model to be robust given a starving federated environment. Our code can be found on https://github.com/jcroh0508/FLATS.
Abstract:Marine microalgae are widespread in the ocean and play a crucial role in the ecosystem. Automatic identification and location of marine microalgae in microscopy images would help establish marine ecological environment monitoring and water quality evaluation system. A new dataset for marine microalgae detection is proposed in this paper. Six classes of microalgae commonlyfound in the ocean (Bacillariophyta, Chlorella pyrenoidosa, Platymonas, Dunaliella salina, Chrysophyta, Symbiodiniaceae) are microscopically imaged in real-time. Images of Symbiodiniaceae in three physiological states known as normal, bleaching, and translating are also included. We annotated these images with bounding boxes using Labelme software and split them into the training and testing sets. The total number of images in the dataset is 937 and all the objects in these images were annotated. The total number of annotated objects is 4201. The training set contains 537 images and the testing set contains 430 images. Baselines of different object detection algorithms are trained, validated and tested on this dataset. This data set can be got accessed via tianchi.aliyun.com/competition/entrance/532036/information.
Abstract:Pre-trained language models allowed us to process downstream tasks with the help of fine-tuning, which aids the model to achieve fairly high accuracy in various Natural Language Processing (NLP) tasks. Such easily-downloaded language models from various websites empowered the public users as well as some major institutions to give a momentum to their real-life application. However, it was recently proven that models become extremely vulnerable when they are backdoor attacked with trigger-inserted poisoned datasets by malicious users. The attackers then redistribute the victim models to the public to attract other users to use them, where the models tend to misclassify when certain triggers are detected within the training sample. In this paper, we will introduce a novel improved textual backdoor defense method, named MSDT, that outperforms the current existing defensive algorithms in specific datasets. The experimental results illustrate that our method can be effective and constructive in terms of defending against backdoor attack in text domain. Code is available at https://github.com/jcroh0508/MSDT.
Abstract:For identification of change information in image sequences, most studies focus on change detection in one image sequence, while few studies have considered the change level comparison between two different image sequences. Moreover, most studies require the detection of image information in details, for example, object detection. Based on Uncertainty Coefficient(UC), this paper proposes an innovative method CCUC for change comparison between two image sequences. The proposed method is computationally efficient and simple to implement. The change comparison stems from video monitoring system. The limited number of provided screens and a large number of monitoring cameras require the videos or image sequences ordered by change level. We demonstrate this new method by applying it on two publicly available image sequences. The results are able to show the method can distinguish the different change level for sequences.