Abstract:The widespread adoption of large language models (LLMs) and awareness around multilingual LLMs have raised concerns regarding the potential risks and repercussions linked to the misapplication of AI-generated text, necessitating increased vigilance. While these models are primarily trained for English, their extensive training on vast datasets covering almost the entire web, equips them with capabilities to perform well in numerous other languages. AI-Generated Text Detection (AGTD) has emerged as a topic that has already received immediate attention in research, with some initial methods having been proposed, soon followed by the emergence of techniques to bypass detection. In this paper, we report our investigation on AGTD for an indic language Hindi. Our major contributions are in four folds: i) examined 26 LLMs to evaluate their proficiency in generating Hindi text, ii) introducing the AI-generated news article in Hindi ($AG_{hi}$) dataset, iii) evaluated the effectiveness of five recently proposed AGTD techniques: ConDA, J-Guard, RADAR, RAIDAR and Intrinsic Dimension Estimation for detecting AI-generated Hindi text, iv) proposed Hindi AI Detectability Index ($ADI_{hi}$) which shows a spectrum to understand the evolving landscape of eloquence of AI-generated text in Hindi. We will make the codes and datasets available to encourage further research.
Abstract:Recent advancements in language technology and Artificial Intelligence have resulted in numerous Language Models being proposed to perform various tasks in the legal domain ranging from predicting judgments to generating summaries. Despite their immense potential, these models have been proven to learn and exhibit societal biases and make unfair predictions. In this study, we explore the ability of Large Language Models (LLMs) to perform legal tasks in the Indian landscape when social factors are involved. We present a novel metric, $\beta$-weighted $\textit{Legal Safety Score ($LSS_{\beta}$)}$, which encapsulates both the fairness and accuracy aspects of the LLM. We assess LLMs' safety by considering its performance in the $\textit{Binary Statutory Reasoning}$ task and its fairness exhibition with respect to various axes of disparities in the Indian society. Task performance and fairness scores of LLaMA and LLaMA--2 models indicate that the proposed $LSS_{\beta}$ metric can effectively determine the readiness of a model for safe usage in the legal sector. We also propose finetuning pipelines, utilising specialised legal datasets, as a potential method to mitigate bias and improve model safety. The finetuning procedures on LLaMA and LLaMA--2 models increase the $LSS_{\beta}$, improving their usability in the Indian legal domain. Our code is publicly released.