Abstract:Large Language Models primarily operate through text-based inputs and outputs, yet human emotion is communicated through both verbal and non-verbal cues, including facial expressions. While Vision-Language Models analyze facial expressions from images, they are resource-intensive and may depend more on linguistic priors than visual understanding. To address this, this study investigates whether LLMs can infer affective meaning from dimensions of facial expressions-Valence and Arousal values, structured numerical representations, rather than using raw visual input. VA values were extracted using Facechannel from images of facial expressions and provided to LLMs in two tasks: (1) categorizing facial expressions into basic (on the IIMI dataset) and complex emotions (on the Emotic dataset) and (2) generating semantic descriptions of facial expressions (on the Emotic dataset). Results from the categorization task indicate that LLMs struggle to classify VA values into discrete emotion categories, particularly for emotions beyond basic polarities (e.g., happiness, sadness). However, in the semantic description task, LLMs produced textual descriptions that align closely with human-generated interpretations, demonstrating a stronger capacity for free text affective inference of facial expressions.
Abstract:This paper presents the very first attempt to evaluate machine learning fairness for depression detection using electroencephalogram (EEG) data. We conduct experiments using different deep learning architectures such as Convolutional Neural Networks (CNN), Long Short-Term Memory (LSTM) networks, and Gated Recurrent Unit (GRU) networks across three EEG datasets: Mumtaz, MODMA and Rest. We employ five different bias mitigation strategies at the pre-, in- and post-processing stages and evaluate their effectiveness. Our experimental results show that bias exists in existing EEG datasets and algorithms for depression detection, and different bias mitigation methods address bias at different levels across different fairness measures.
Abstract:Machine learning bias in mental health is becoming an increasingly pertinent challenge. Despite promising efforts indicating that multitask approaches often work better than unitask approaches, there is minimal work investigating the impact of multitask learning on performance and fairness in depression detection nor leveraged it to achieve fairer prediction outcomes. In this work, we undertake a systematic investigation of using a multitask approach to improve performance and fairness for depression detection. We propose a novel gender-based task-reweighting method using uncertainty grounded in how the PHQ-8 questionnaire is structured. Our results indicate that, although a multitask approach improves performance and fairness compared to a unitask approach, the results are not always consistent and we see evidence of negative transfer and a reduction in the Pareto frontier, which is concerning given the high-stake healthcare setting. Our proposed approach of gender-based reweighting with uncertainty improves performance and fairness and alleviates both challenges to a certain extent. Our findings on each PHQ-8 subitem task difficulty are also in agreement with the largest study conducted on the PHQ-8 subitem discrimination capacity, thus providing the very first tangible evidence linking ML findings with large-scale empirical population studies conducted on the PHQ-8.
Abstract:When operating in human environments, robots need to handle complex tasks while both adhering to social norms and accommodating individual preferences. For instance, based on common sense knowledge, a household robot can predict that it should avoid vacuuming during a social gathering, but it may still be uncertain whether it should vacuum before or after having guests. In such cases, integrating common-sense knowledge with human preferences, often conveyed through human explanations, is fundamental yet a challenge for existing systems. In this paper, we introduce GRACE, a novel approach addressing this while generating socially appropriate robot actions. GRACE leverages common sense knowledge from Large Language Models (LLMs), and it integrates this knowledge with human explanations through a generative network architecture. The bidirectional structure of GRACE enables robots to refine and enhance LLM predictions by utilizing human explanations and makes robots capable of generating such explanations for human-specified actions. Our experimental evaluations show that integrating human explanations boosts GRACE's performance, where it outperforms several baselines and provides sensible explanations.
Abstract:Social agents and robots are increasingly being used in wellbeing settings. However, a key challenge is that these agents and robots typically rely on machine learning (ML) algorithms to detect and analyse an individual's mental wellbeing. The problem of bias and fairness in ML algorithms is becoming an increasingly greater source of concern. In concurrence, existing literature has also indicated that mental health conditions can manifest differently across genders and cultures. We hypothesise that the representation of features (acoustic, textual, and visual) and their inter-modal relations would vary among subjects from different cultures and genders, thus impacting the performance and fairness of various ML models. We present the very first evaluation of multimodal gender fairness in depression manifestation by undertaking a study on two different datasets from the USA and China. We undertake thorough statistical and ML experimentation and repeat the experiments for several different algorithms to ensure that the results are not algorithm-dependent. Our findings indicate that though there are differences between both datasets, it is not conclusive whether this is due to the difference in depression manifestation as hypothesised or other external factors such as differences in data collection methodology. Our findings further motivate a call for a more consistent and culturally aware data collection process in order to address the problem of ML bias in depression detection and to promote the development of fairer agents and robots for wellbeing.
Abstract:Despite the recent advancements in robotics and machine learning (ML), the deployment of autonomous robots in our everyday lives is still an open challenge. This is due to multiple reasons among which are their frequent mistakes, such as interrupting people or having delayed responses, as well as their limited ability to understand human speech, i.e., failure in tasks like transcribing speech to text. These mistakes may disrupt interactions and negatively influence human perception of these robots. To address this problem, robots need to have the ability to detect human-robot interaction (HRI) failures. The ERR@HRI 2024 challenge tackles this by offering a benchmark multimodal dataset of robot failures during human-robot interactions (HRI), encouraging researchers to develop and benchmark multimodal machine learning models to detect these failures. We created a dataset featuring multimodal non-verbal interaction data, including facial, speech, and pose features from video clips of interactions with a robotic coach, annotated with labels indicating the presence or absence of robot mistakes, user awkwardness, and interaction ruptures, allowing for the training and evaluation of predictive models. Challenge participants have been invited to submit their multimodal ML models for detection of robot errors and to be evaluated against various performance metrics such as accuracy, precision, recall, F1 score, with and without a margin of error reflecting the time-sensitivity of these metrics. The results of this challenge will help the research field in better understanding the robot failures in human-robot interactions and designing autonomous robots that can mitigate their own errors after successfully detecting them.
Abstract:Existing Graph Neural Networks (GNNs) are limited to process graphs each of whose vertices is represented by a vector or a single value, limited their representing capability to describe complex objects. In this paper, we propose the first GNN (called Graph in Graph Neural (GIG) Network) which can process graph-style data (called GIG sample) whose vertices are further represented by graphs. Given a set of graphs or a data sample whose components can be represented by a set of graphs (called multi-graph data sample), our GIG network starts with a GIG sample generation (GSG) module which encodes the input as a \textbf{GIG sample}, where each GIG vertex includes a graph. Then, a set of GIG hidden layers are stacked, with each consisting of: (1) a GIG vertex-level updating (GVU) module that individually updates the graph in every GIG vertex based on its internal information; and (2) a global-level GIG sample updating (GGU) module that updates graphs in all GIG vertices based on their relationships, making the updated GIG vertices become global context-aware. This way, both internal cues within the graph contained in each GIG vertex and the relationships among GIG vertices could be utilized for down-stream tasks. Experimental results demonstrate that our GIG network generalizes well for not only various generic graph analysis tasks but also real-world multi-graph data analysis (e.g., human skeleton video-based action recognition), which achieved the new state-of-the-art results on 13 out of 14 evaluated datasets. Our code is publicly available at https://github.com/wangjs96/Graph-in-Graph-Neural-Network.
Abstract:Recent studies show bias in many machine learning models for depression detection, but bias in LLMs for this task remains unexplored. This work presents the first attempt to investigate the degree of gender bias present in existing LLMs (ChatGPT, LLaMA 2, and Bard) using both quantitative and qualitative approaches. From our quantitative evaluation, we found that ChatGPT performs the best across various performance metrics and LLaMA 2 outperforms other LLMs in terms of group fairness metrics. As qualitative fairness evaluation remains an open research question we propose several strategies (e.g., word count, thematic analysis) to investigate whether and how a qualitative evaluation can provide valuable insights for bias analysis beyond what is possible with quantitative evaluation. We found that ChatGPT consistently provides a more comprehensive, well-reasoned explanation for its prediction compared to LLaMA 2. We have also identified several themes adopted by LLMs to qualitatively evaluate gender fairness. We hope our results can be used as a stepping stone towards future attempts at improving qualitative evaluation of fairness for LLMs especially for high-stakes tasks such as depression detection.
Abstract:Socially Assistive Robots are studied in different Child-Robot Interaction settings. However, logistical constraints limit accessibility, particularly affecting timely support for mental wellbeing. In this work, we have investigated whether online interactions with a robot can be used for the assessment of mental wellbeing in children. The children (N=40, 20 girls and 20 boys; 8-13 years) interacted with the Nao robot (30-45 mins) over three sessions, at least a week apart. Audio-visual recordings were collected throughout the sessions that concluded with the children answering user perception questionnaires pertaining to their anxiety towards the robot, and the robot's abilities. We divided the participants into three wellbeing clusters (low, med and high tertiles) using their responses to the Short Moods and Feelings Questionnaire (SMFQ) and further analysed how their wellbeing and their perceptions of the robot changed over the wellbeing tertiles, across sessions and across participants' gender. Our primary findings suggest that (I) online mediated-interactions with robots can be effective in assessing children's mental wellbeing over time, and (II) children's overall perception of the robot either improved or remained consistent across time. Supplementary exploratory analyses have also revealed that gender affected the children's wellbeing assessments as well as their perceptions of the robot.
Abstract:As social robots become increasingly integrated into daily life, ensuring their behaviours align with social norms is crucial. For their widespread open-world application, it is important to explore Federated Learning (FL) settings where individual robots can learn about their unique environments while also learning from each others' experiences. In this paper, we present a novel FL benchmark that evaluates different strategies, using multi-label regression objectives, where each client individually learns to predict the social appropriateness of different robot actions while also sharing their learning with others. Furthermore, splitting the training data by different contexts such that each client incrementally learns across contexts, we present a novel Federated Continual Learning (FCL) benchmark that adapts FL-based methods to use state-of-the-art Continual Learning (CL) methods to continually learn socially appropriate agent behaviours under different contextual settings. Federated Averaging (FedAvg) of weights emerges as a robust FL strategy while rehearsal-based FCL enables incrementally learning the social appropriateness of robot actions, across contextual splits.