Abstract:Machine-generated music (MGM) has become a groundbreaking innovation with wide-ranging applications, such as music therapy, personalised editing, and creative inspiration within the music industry. However, the unregulated proliferation of MGM presents considerable challenges to the entertainment, education, and arts sectors by potentially undermining the value of high-quality human compositions. Consequently, MGM detection (MGMD) is crucial for preserving the integrity of these fields. Despite its significance, MGMD domain lacks comprehensive benchmark results necessary to drive meaningful progress. To address this gap, we conduct experiments on existing large-scale datasets using a range of foundational models for audio processing, establishing benchmark results tailored to the MGMD task. Our selection includes traditional machine learning models, deep neural networks, Transformer-based architectures, and State Space Models (SSM). Recognising the inherently multimodal nature of music, which integrates both melody and lyrics, we also explore fundamental multimodal models in our experiments. Beyond providing basic binary classification outcomes, we delve deeper into model behaviour using multiple explainable Aritificial Intelligence (XAI) tools, offering insights into their decision-making processes. Our analysis reveals that ResNet18 performs the best according to in-domain and out-of-domain tests. By providing a comprehensive comparison of benchmark results and their interpretability, we propose several directions to inspire future research to develop more robust and effective detection methods for MGM.
Abstract:Machine-generated music (MGM) has emerged as a powerful tool with applications in music therapy, personalised editing, and creative inspiration for the music community. However, its unregulated use threatens the entertainment, education, and arts sectors by diminishing the value of high-quality human compositions. Detecting machine-generated music (MGMD) is, therefore, critical to safeguarding these domains, yet the field lacks comprehensive datasets to support meaningful progress. To address this gap, we introduce \textbf{M6}, a large-scale benchmark dataset tailored for MGMD research. M6 is distinguished by its diversity, encompassing multiple generators, domains, languages, cultural contexts, genres, and instruments. We outline our methodology for data selection and collection, accompanied by detailed data analysis, providing all WAV form of music. Additionally, we provide baseline performance scores using foundational binary classification models, illustrating the complexity of MGMD and the significant room for improvement. By offering a robust and multifaceted resource, we aim to empower future research to develop more effective detection methods for MGM. We believe M6 will serve as a critical step toward addressing this societal challenge. The dataset and code will be freely available to support open collaboration and innovation in this field.
Abstract:Remote sensing target detection aims to identify and locate critical targets within remote sensing images, finding extensive applications in agriculture and urban planning. Feature pyramid networks (FPNs) are commonly used to extract multi-scale features. However, existing FPNs often overlook extracting low-level positional information and fine-grained context interaction. To address this, we propose a novel location refined feature pyramid network (LR-FPN) to enhance the extraction of shallow positional information and facilitate fine-grained context interaction. The LR-FPN consists of two primary modules: the shallow position information extraction module (SPIEM) and the contextual interaction module (CIM). Specifically, SPIEM first maximizes the retention of solid location information of the target by simultaneously extracting positional and saliency information from the low-level feature map. Subsequently, CIM injects this robust location information into different layers of the original FPN through spatial and channel interaction, explicitly enhancing the object area. Moreover, in spatial interaction, we introduce a simple local and non-local interaction strategy to learn and retain the saliency information of the object. Lastly, the LR-FPN can be readily integrated into common object detection frameworks to improve performance significantly. Extensive experiments on two large-scale remote sensing datasets (i.e., DOTAV1.0 and HRSC2016) demonstrate that the proposed LR-FPN is superior to state-of-the-art object detection approaches. Our code and models will be publicly available.