Abstract:This paper presents ATEM, a novel framework for studying topic evolution in scientific archives. ATEM is based on dynamic topic modeling and dynamic graph embedding techniques that explore the dynamics of content and citations of documents within a scientific corpus. ATEM explores a new notion of contextual emergence for the discovery of emerging interdisciplinary research topics based on the dynamics of citation links in topic clusters. Our experiments show that ATEM can efficiently detect emerging cross-disciplinary topics within the DBLP archive of over five million computer science articles.
Abstract:The recent explosion in work on neural topic modeling has been criticized for optimizing automated topic evaluation metrics at the expense of actual meaningful topic identification. But human annotation remains expensive and time-consuming. We propose LLM-based methods inspired by standard human topic evaluations, in a family of metrics called Contextualized Topic Coherence (CTC). We evaluate both a fully automated version as well as a semi-automated CTC that allows human-centered evaluation of coherence while maintaining the efficiency of automated methods. We evaluate CTC relative to five other metrics on six topic models and find that it outperforms automated topic coherence methods, works well on short documents, and is not susceptible to meaningless but high-scoring topics.
Abstract:As the amount of text data generated by humans and machines increases, the necessity of understanding large corpora and finding a way to extract insights from them is becoming more crucial than ever. Dynamic topic models are effective methods that primarily focus on studying the evolution of topics present in a collection of documents. These models are widely used for understanding trends, exploring public opinion in social networks, or tracking research progress and discoveries in scientific archives. Since topics are defined as clusters of semantically similar documents, it is necessary to observe the changes in the content or themes of these clusters in order to understand how topics evolve as new knowledge is discovered over time. In this paper, we introduce the Aligned Neural Topic Model (ANTM), a dynamic neural topic model that uses document embeddings to compute clusters of semantically similar documents at different periods and to align document clusters to represent their evolution. This alignment procedure preserves the temporal similarity of document clusters over time and captures the semantic change of words characterized by their context within different periods. Experiments on four different datasets show that ANTM outperforms probabilistic dynamic topic models (e.g. DTM, DETM) and significantly improves topic coherence and diversity over other existing dynamic neural topic models (e.g. BERTopic).
Abstract:As the number of Human-Centered Internet of Things (HCIoT) applications increases, the self-adaptation of its services and devices is becoming a fundamental requirement for addressing the uncertainties of the environment in decision-making processes. Self-adaptation of HCIoT aims to manage run-time changes in a dynamic environment and to adjust the functionality of IoT objects in order to achieve desired goals during execution. SMASH is a semantic-enabled multi-agent system for self-adaptation of HCIoT that autonomously adapts IoT objects to uncertainties of their environment. SMASH addresses the self-adaptation of IoT applications only according to the human values of users, while the behavior of users is not addressed. This article presents Q-SMASH: a multi-agent reinforcement learning-based approach for self-adaptation of IoT objects in human-centered environments. Q-SMASH aims to learn the behaviors of users along with respecting human values. The learning ability of Q-SMASH allows it to adapt itself to the behavioral change of users and make more accurate decisions in different states and situations.
Abstract:Nowadays, IoT devices have an enlarging scope of activities spanning from sensing, computing to acting and even more, learning, reasoning and planning. As the number of IoT applications increases, these objects are becoming more and more ubiquitous. Therefore, they need to adapt their functionality in response to the uncertainties of their environment to achieve their goals. In Human-centered IoT, objects and devices have direct interactions with human beings and have access to online contextual information. Self-adaptation of such applications is a crucial subject that needs to be addressed in a way that respects human goals and human values. Hence, IoT applications must be equipped with self-adaptation techniques to manage their run-time uncertainties locally or in cooperation with each other. This paper presents SMASH: a multi-agent approach for self-adaptation of IoT applications in human-centered environments. In this paper, we have considered the Smart Home as the case study of smart environments. SMASH agents are provided with a 4-layer architecture based on the BDI agent model that integrates human values with goal-reasoning, planning, and acting. It also takes advantage of a semantic-enabled platform called Home'In to address interoperability issues among non-identical agents and devices with heterogeneous protocols and data formats. This approach is compared with the literature and is validated by developing a scenario as the proof of concept. The timely responses of SMASH agents show the feasibility of the proposed approach in human-centered environments.
Abstract:This research proposal aims to use cognitive methods to analyze the quality of roads based on the new proposed technology called Cognitive Internet of Vehicles (CIoV). By using Big Data corresponding to the collected data of autonomous vehicles, we can apply cognitive analytics to a huge amount of transportation data. This process can help us to create valuable information such as road quality from an immense volume of meaningless data. In this proposal, we are going to focus on the quality of roads for various business and commercial purposes. The proposed system can be used as an additional service of autonomous car companies or as a mobile application for ordinary usages. As a result, this system can reduce the usage of resources such as energy consumption of autonomous vehicles. Moreover, this technology benefits the next-generation of self-driving applications to improve their QoS.