Abstract:Generative retrieval for search and recommendation is a promising paradigm for retrieving items, offering an alternative to traditional methods that depend on external indexes and nearest-neighbor searches. Instead, generative models directly associate inputs with item IDs. Given the breakthroughs of Large Language Models (LLMs), these generative systems can play a crucial role in centralizing a variety of Information Retrieval (IR) tasks in a single model that performs tasks such as query understanding, retrieval, recommendation, explanation, re-ranking, and response generation. Despite the growing interest in such a unified generative approach for IR systems, the advantages of using a single, multi-task model over multiple specialized models are not well established in the literature. This paper investigates whether and when such a unified approach can outperform task-specific models in the IR tasks of search and recommendation, broadly co-existing in multiple industrial online platforms, such as Spotify, YouTube, and Netflix. Previous work shows that (1) the latent representations of items learned by generative recommenders are biased towards popularity, and (2) content-based and collaborative-filtering-based information can improve an item's representations. Motivated by this, our study is guided by two hypotheses: [H1] the joint training regularizes the estimation of each item's popularity, and [H2] the joint training regularizes the item's latent representations, where search captures content-based aspects of an item and recommendation captures collaborative-filtering aspects. Our extensive experiments with both simulated and real-world data support both [H1] and [H2] as key contributors to the effectiveness improvements observed in the unified search and recommendation generative models over the single-task approaches.
Abstract:Listeners of long-form talk-audio content, such as podcast episodes, often find it challenging to understand the overall structure and locate relevant sections. A practical solution is to divide episodes into chapters--semantically coherent segments labeled with titles and timestamps. Since most episodes on our platform at Spotify currently lack creator-provided chapters, automating the creation of chapters is essential. Scaling the chapterization of podcast episodes presents unique challenges. First, episodes tend to be less structured than written texts, featuring spontaneous discussions with nuanced transitions. Second, the transcripts are usually lengthy, averaging about 16,000 tokens, which necessitates efficient processing that can preserve context. To address these challenges, we introduce PODTILE, a fine-tuned encoder-decoder transformer to segment conversational data. The model simultaneously generates chapter transitions and titles for the input transcript. To preserve context, each input text is augmented with global context, including the episode's title, description, and previous chapter titles. In our intrinsic evaluation, PODTILE achieved an 11% improvement in ROUGE score over the strongest baseline. Additionally, we provide insights into the practical benefits of auto-generated chapters for listeners navigating episode content. Our findings indicate that auto-generated chapters serve as a useful tool for engaging with less popular podcasts. Finally, we present empirical evidence that using chapter titles can enhance effectiveness of sparse retrieval in search tasks.
Abstract:An important goal of online platforms is to enable content discovery, i.e. allow users to find a catalog entity they were not familiar with. A pre-requisite to discover an entity, e.g. a book, with a search engine is that the entity is retrievable, i.e. there are queries for which the system will surface such entity in the top results. However, machine-learned search engines have a high retrievability bias, where the majority of the queries return the same entities. This happens partly due to the predominance of narrow intent queries, where users create queries using the title of an already known entity, e.g. in book search 'harry potter'. The amount of broad queries where users want to discover new entities, e.g. in music search 'chill lyrical electronica with an atmospheric feeling to it', and have a higher tolerance to what they might find, is small in comparison. We focus here on two factors that have a negative impact on the retrievability of the entities (I) the training data used for dense retrieval models and (II) the distribution of narrow and broad intent queries issued in the system. We propose CtrlQGen, a method that generates queries for a chosen underlying intent-narrow or broad. We can use CtrlQGen to improve factor (I) by generating training data for dense retrieval models comprised of diverse synthetic queries. CtrlQGen can also be used to deal with factor (II) by suggesting queries with broader intents to users. Our results on datasets from the domains of music, podcasts, and books reveal that we can significantly decrease the retrievability bias of a dense retrieval model when using CtrlQGen. First, by using the generated queries as training data for dense models we make 9% of the entities retrievable (go from zero to non-zero retrievability). Second, by suggesting broader queries to users, we can make 12% of the entities retrievable in the best case.
Abstract:A number of learned sparse and dense retrieval approaches have recently been proposed and proven effective in tasks such as passage retrieval and document retrieval. In this paper we analyze with a replicability study if the lessons learned generalize to the retrieval of responses for dialogues, an important task for the increasingly popular field of conversational search. Unlike passage and document retrieval where documents are usually longer than queries, in response ranking for dialogues the queries (dialogue contexts) are often longer than the documents (responses). Additionally, dialogues have a particular structure, i.e. multiple utterances by different users. With these differences in mind, we here evaluate how generalizable the following major findings from previous works are: (F1) query expansion outperforms a no-expansion baseline; (F2) document expansion outperforms a no-expansion baseline; (F3) zero-shot dense retrieval underperforms sparse baselines; (F4) dense retrieval outperforms sparse baselines; (F5) hard negative sampling is better than random sampling for training dense models. Our experiments -- based on three different information-seeking dialogue datasets -- reveal that four out of five findings (F2-F5) generalize to our domain
Abstract:Ranking responses for a given dialogue context is a popular benchmark in which the setup is to re-rank the ground-truth response over a limited set of $n$ responses, where $n$ is typically 10. The predominance of this setup in conversation response ranking has lead to a great deal of attention to building neural re-rankers, while the first-stage retrieval step has been overlooked. Since the correct answer is always available in the candidate list of $n$ responses, this artificial evaluation setup assumes that there is a first-stage retrieval step which is always able to rank the correct response in its top-$n$ list. In this paper we focus on the more realistic task of full-rank retrieval of responses, where $n$ can be up to millions of responses. We investigate both dialogue context and response expansion techniques for sparse retrieval, as well as zero-shot and fine-tuned dense retrieval approaches. Our findings based on three different information-seeking dialogue datasets reveal that a learned response expansion technique is a solid baseline for sparse retrieval. We find the best performing method overall to be dense retrieval with intermediate training, i.e. a step after the language model pre-training where sentence representations are learned, followed by fine-tuning on the target conversational data. We also investigate the intriguing phenomena that harder negatives sampling techniques lead to worse results for the fine-tuned dense retrieval models. The code and datasets are available at https://github.com/Guzpenha/transformer_rankers/tree/full_rank_retrieval_dialogues.
Abstract:Heavily pre-trained transformers for language modelling, such as BERT, have shown to be remarkably effective for Information Retrieval (IR) tasks, typically applied to re-rank the results of a first-stage retrieval model. IR benchmarks evaluate the effectiveness of retrieval pipelines based on the premise that a single query is used to instantiate the underlying information need. However, previous research has shown that (I) queries generated by users for a fixed information need are extremely variable and, in particular, (II) neural models are brittle and often make mistakes when tested with modified inputs. Motivated by those observations we aim to answer the following question: how robust are retrieval pipelines with respect to different variations in queries that do not change the queries' semantics? In order to obtain queries that are representative of users' querying variability, we first created a taxonomy based on the manual annotation of transformations occurring in a dataset (UQV100) of user-created query variations. For each syntax-changing category of our taxonomy, we employed different automatic methods that when applied to a query generate a query variation. Our experimental results across two datasets for two IR tasks reveal that retrieval pipelines are not robust to these query variations, with effectiveness drops of $\approx20\%$ on average. The code and datasets are available at https://github.com/Guzpenha/query_variation_generators.
Abstract:According to the Probability Ranking Principle (PRP), ranking documents in decreasing order of their probability of relevance leads to an optimal document ranking for ad-hoc retrieval. The PRP holds when two conditions are met: [C1] the models are well calibrated, and, [C2] the probabilities of relevance are reported with certainty. We know however that deep neural networks (DNNs) are often not well calibrated and have several sources of uncertainty, and thus [C1] and [C2] might not be satisfied by neural rankers. Given the success of neural Learning to Rank (L2R) approaches-and here, especially BERT-based approaches-we first analyze under which circumstances deterministic, i.e. outputs point estimates, neural rankers are calibrated. Then, motivated by our findings we use two techniques to model the uncertainty of neural rankers leading to the proposed stochastic rankers, which output a predictive distribution of relevance as opposed to point estimates. Our experimental results on the ad-hoc retrieval task of conversation response ranking reveal that (i) BERT-based rankers are not robustly calibrated and that stochastic BERT-based rankers yield better calibration; and (ii) uncertainty estimation is beneficial for both risk-aware neural ranking, i.e.taking into account the uncertainty when ranking documents, and for predicting unanswerable conversational contexts.
Abstract:We study Label Smoothing (LS), a widely used regularization technique, in the context of neural learning to rank (L2R) models. LS combines the ground-truth labels with a uniform distribution, encouraging the model to be less confident in its predictions. We analyze the relationship between the non-relevant documents-specifically how they are sampled-and the effectiveness of LS, discussing how LS can be capturing "hidden similarity knowledge" between the relevantand non-relevant document classes. We further analyze LS by testing if a curriculum-learning approach, i.e., starting with LS and after anumber of iterations using only ground-truth labels, is beneficial. Inspired by our investigation of LS in the context of neural L2R models, we propose a novel technique called Weakly Supervised Label Smoothing (WSLS) that takes advantage of the retrieval scores of the negative sampled documents as a weak supervision signal in the process of modifying the ground-truth labels. WSLS is simple to implement, requiring no modification to the neural ranker architecture. Our experiments across three retrieval tasks-passage retrieval, similar question retrieval and conversation response ranking-show that WSLS for pointwise BERT-based rankers leads to consistent effectiveness gains. The source code is available at https://anonymous.4open.science/r/dac85d48-6f71-4261-a7d8-040da6021c52/.
Abstract:Understanding when and why neural ranking models fail for an IR task via error analysis is an important part of the research cycle. Here we focus on the challenges of (i) identifying categories of difficult instances (a pair of question and response candidates) for which a neural ranker is ineffective and (ii) improving neural ranking for such instances. To address both challenges we resort to slice-based learning for which the goal is to improve effectiveness of neural models for slices (subsets) of data. We address challenge (i) by proposing different slicing functions (SFs) that select slices of the dataset---based on prior work we heuristically capture different failures of neural rankers. Then, for challenge (ii) we adapt a neural ranking model to learn slice-aware representations, i.e. the adapted model learns to represent the question and responses differently based on the model's prediction of which slices they belong to. Our experimental results (the source code and data are available at https://github.com/Guzpenha/slice_based_learning) across three different ranking tasks and four corpora show that slice-based learning improves the effectiveness by an average of 2% over a neural ranker that is not slice-aware.
Abstract:Neural ranking models are traditionally trained on a series of random batches, sampled uniformly from the entire training set. Curriculum learning has recently been shown to improve neural models' effectiveness by sampling batches non-uniformly, going from easy to difficult instances during training. In the context of neural Information Retrieval (IR) curriculum learning has not been explored yet, and so it remains unclear (1) how to measure the difficulty of training instances and (2) how to transition from easy to difficult instances during training. To address both challenges and determine whether curriculum learning is beneficial for neural ranking models, we need large-scale datasets and a retrieval task that allows us to conduct a wide range of experiments. For this purpose, we resort to the task of conversation response ranking: ranking responses given the conversation history. In order to deal with challenge (1), we explore scoring functions to measure the difficulty of conversations based on different input spaces. To address challenge (2) we evaluate different pacing functions, which determine the velocity in which we go from easy to difficult instances. We find that, overall, by just intelligently sorting the training data (i.e., by performing curriculum learning) we can improve the retrieval effectiveness by up to 2%.