Abstract:Motivated by the superior performance of deep learning in many applications including computer vision and natural language processing, several recent studies have focused on applying deep neural network for devising future generations of wireless networks. However, several recent works have pointed out that imperceptible and carefully designed adversarial examples (attacks) can significantly deteriorate the classification accuracy. In this paper, we investigate a defense mechanism based on both training-time and run-time defense techniques for protecting machine learning-based radio signal (modulation) classification against adversarial attacks. The training-time defense consists of adversarial training and label smoothing, while the run-time defense employs a support vector machine-based neural rejection (NR). Considering a white-box scenario and real datasets, we demonstrate that our proposed techniques outperform existing state-of-the-art technologies.
Abstract:Choosing the values of hyper-parameters in sparse Bayesian learning (SBL) can significantly impact performance. However, the hyper-parameters are normally tuned manually, which is often a difficult task. Most recently, effective automatic hyper-parameter tuning was achieved by using an empirical auto-tuner. In this work, we address the issue of hyper-parameter auto-tuning using neural network (NN)-based learning. Inspired by the empirical auto-tuner, we design and learn a NN-based auto-tuner, and show that considerable improvement in convergence rate and recovery performance can be achieved.
Abstract:In this paper, we investigate signal detection in multiple-input-multiple-output (MIMO) communication systems with hardware impairments, such as power amplifier nonlinearity and in-phase/quadrature imbalance. To deal with the complex combined effects of hardware imperfections, neural network (NN) techniques, in particular deep neural networks (DNNs), have been studied to directly compensate for the impact of hardware impairments. However, it is difficult to train a DNN with limited pilot signals, hindering its practical applications. In this work, we investigate how to achieve efficient Bayesian signal detection in MIMO systems with hardware imperfections. Characterizing combined hardware imperfections often leads to complicated signal models, making Bayesian signal detection challenging. To address this issue, we first train an NN to "model" the MIMO system with hardware imperfections and then perform Bayesian inference based on the trained NN. Modelling the MIMO system with NN enables the design of NN architectures based on the signal flow of the MIMO system, minimizing the number of NN layers and parameters, which is crucial to achieving efficient training with limited pilot signals. We then represent the trained NN with a factor graph, and design an efficient message passing based Bayesian signal detector, leveraging the unitary approximate message passing (UAMP) algorithm. The implementation of a turbo receiver with the proposed Bayesian detector is also investigated. Extensive simulation results demonstrate that the proposed technique delivers remarkably better performance than state-of-the-art methods.
Abstract:Source number detection is a critical problem in array signal processing. Conventional model-driven methods e.g., Akaikes information criterion (AIC) and minimum description length (MDL), suffer from severe performance degradation when the number of snapshots is small or the signal-to-noise ratio (SNR) is low. In this paper, we exploit the model-aided based deep neural network (DNN) to estimate the source number. Specifically, we first propose the eigenvalue based regression network (ERNet) and classification network (ECNet) to estimate the number of non-coherent sources, where the eigenvalues of the received signal covariance matrix and the source number are used as the input and the supervise label of the networks, respectively. Then, we extend the ERNet and ECNet for estimating the number of coherent sources, where the forward-backward spatial smoothing (FBSS) scheme is adopted to improve the performance of ERNet and ECNet. Numerical results demonstrate the outstanding performance of ERNet and ECNet over the conventional AIC and MDL methods as well as their excellent generalization capability, which also shows their great potentials for practical applications.