Abstract:In this paper, we consider a deterministic online linear regression model where we allow the responses to be multivariate. To address this problem, we introduce MultiVAW, a method that extends the well-known Vovk-Azoury-Warmuth algorithm to the multivariate setting, and show that it also enjoys logarithmic regret in time. We apply our results to the online hierarchical forecasting problem and recover an algorithm from this literature as a special case, allowing us to relax the hypotheses usually made for its analysis.
Abstract:There are several applications of stochastic optimization where one can benefit from a robust estimate of the gradient. For example, domains such as distributed learning with corrupted nodes, the presence of large outliers in the training data, learning under privacy constraints, or even heavy-tailed noise due to the dynamics of the algorithm itself. Here we study SGD with robust gradient estimators based on estimating the median. We first consider computing the median gradient across samples, and show that the resulting method can converge even under heavy-tailed, state-dependent noise. We then derive iterative methods based on the stochastic proximal point method for computing the geometric median and generalizations thereof. Finally we propose an algorithm estimating the median gradient across iterations, and find that several well known methods - in particular different forms of clipping - are particular cases of this framework.
Abstract:Here we develop variants of SGD (stochastic gradient descent) with an adaptive step size that make use of the sampled loss values. In particular, we focus on solving a finite sum-of-terms problem, also known as empirical risk minimization. We first detail an idealized adaptive method called $\texttt{SPS}_+$ that makes use of the sampled loss values and assumes knowledge of the sampled loss at optimality. This $\texttt{SPS}_+$ is a minor modification of the SPS (Stochastic Polyak Stepsize) method, where the step size is enforced to be positive. We then show that $\texttt{SPS}_+$ achieves the best known rates of convergence for SGD in the Lipschitz non-smooth. We then move onto to develop $\texttt{FUVAL}$, a variant of $\texttt{SPS}_+$ where the loss values at optimality are gradually learned, as opposed to being given. We give three viewpoints of $\texttt{FUVAL}$, as a projection based method, as a variant of the prox-linear method, and then as a particular online SGD method. We then present a convergence analysis of $\texttt{FUVAL}$ and experimental results. The shortcomings of our work is that the convergence analysis of $\texttt{FUVAL}$ shows no advantage over SGD. Another shortcomming is that currently only the full batch version of $\texttt{FUVAL}$ shows a minor advantages of GD (Gradient Descent) in terms of sensitivity to the step size. The stochastic version shows no clear advantage over SGD. We conjecture that large mini-batches are required to make $\texttt{FUVAL}$ competitive. Currently the new $\texttt{FUVAL}$ method studied in this paper does not offer any clear theoretical or practical advantage. We have chosen to make this draft available online nonetheless because of some of the analysis techniques we use, such as the non-smooth analysis of $\texttt{SPS}_+$, and also to show an apparently interesting approach that currently does not work.
Abstract:We study multi-product inventory control problems where a manager makes sequential replenishment decisions based on partial historical information in order to minimize its cumulative losses. Our motivation is to consider general demands, losses and dynamics to go beyond standard models which usually rely on newsvendor-type losses, fixed dynamics, and unrealistic i.i.d. demand assumptions. We propose MaxCOSD, an online algorithm that has provable guarantees even for problems with non-i.i.d. demands and stateful dynamics, including for instance perishability. We consider what we call non-degeneracy assumptions on the demand process, and argue that they are necessary to allow learning.
Abstract:While black-box variational inference is widely used, there is no proof that its stochastic optimization succeeds. We suggest this is due to a theoretical gap in existing stochastic optimization proofs-namely the challenge of gradient estimators with unusual noise bounds, and a composite non-smooth objective. For dense Gaussian variational families, we observe that existing gradient estimators based on reparameterization satisfy a quadratic noise bound and give novel convergence guarantees for proximal and projected stochastic gradient descent using this bound. This provides the first rigorous guarantee that black-box variational inference converges for realistic inference problems.
Abstract:We provide a comprehensive study of the convergence of forward-backward algorithm under suitable geometric conditions leading to fast rates. We present several new results and collect in a unified view a variety of results scattered in the literature, often providing simplified proofs. Novel contributions include the analysis of infinite dimensional convex minimization problems, allowing the case where minimizers might not exist. Further, we analyze the relation between different geometric conditions, and discuss novel connections with a priori conditions in linear inverse problems, including source conditions, restricted isometry properties and partial smoothness.