Abstract:Addressing multi-label action recognition in videos represents a significant challenge for robotic applications in dynamic environments, especially when the robot is required to cooperate with humans in tasks that involve objects. Existing methods still struggle to recognize unseen actions or require extensive training data. To overcome these problems, we propose Dual-VCLIP, a unified approach for zero-shot multi-label action recognition. Dual-VCLIP enhances VCLIP, a zero-shot action recognition method, with the DualCoOp method for multi-label image classification. The strength of our method is that at training time it only learns two prompts, and it is therefore much simpler than other methods. We validate our method on the Charades dataset that includes a majority of object-based actions, demonstrating that -- despite its simplicity -- our method performs favorably with respect to existing methods on the complete dataset, and promising performance when tested on unseen actions. Our contribution emphasizes the impact of verb-object class-splits during robots' training for new cooperative tasks, highlighting the influence on the performance and giving insights into mitigating biases.
Abstract:The visual system of a robot has different requirements depending on the application: it may require high accuracy or reliability, be constrained by limited resources or need fast adaptation to dynamically changing environments. In this work, we focus on the instance segmentation task and provide a comprehensive study of different techniques that allow adapting an object segmentation model in presence of novel objects or different domains. We propose a pipeline for fast instance segmentation learning designed for robotic applications where data come in stream. It is based on an hybrid method leveraging on a pre-trained CNN for feature extraction and fast-to-train Kernel-based classifiers. We also propose a training protocol that allows to shorten the training time by performing feature extraction during the data acquisition. We benchmark the proposed pipeline on two robotics datasets and we deploy it on a real robot, i.e. the iCub humanoid. To this aim, we adapt our method to an incremental setting in which novel objects are learned on-line by the robot. The code to reproduce the experiments is publicly available on GitHub.
Abstract:We consider the task of object grasping with a prosthetic hand capable of multiple grasp types. In this setting, communicating the intended grasp type often requires a high user cognitive load which can be reduced adopting shared autonomy frameworks. Among these, so-called eye-in-hand systems automatically control the hand aperture and pre-shaping before the grasp, based on visual input coming from a camera on the wrist. In this work, we present an eye-in-hand learning-based approach for hand pre-shape classification from RGB sequences. In order to reduce the need for tedious data collection sessions for training the system, we devise a pipeline for rendering synthetic visual sequences of hand trajectories for the purpose. We tackle the peculiarity of the eye-in-hand setting by means of a model for the human arm trajectories, with domain randomization over relevant visual elements. We develop a sensorized setup to acquire real human grasping sequences for benchmarking and show that, compared on practical use cases, models trained with our synthetic dataset achieve better generalization performance than models trained on real data. We finally integrate our model on the Hannes prosthetic hand and show its practical effectiveness. Our code, real and synthetic datasets will be released upon acceptance.
Abstract:6D object pose tracking has been extensively studied in the robotics and computer vision communities. The most promising solutions, leveraging on deep neural networks and/or filtering and optimization, exhibit notable performance on standard benchmarks. However, to our best knowledge, these have not been tested thoroughly against fast object motions. Tracking performance in this scenario degrades significantly, especially for methods that do not achieve real-time performance and introduce non negligible delays. In this work, we introduce ROFT, a Kalman filtering approach for 6D object pose and velocity tracking from a stream of RGB-D images. By leveraging real-time optical flow, ROFT synchronizes delayed outputs of low frame rate Convolutional Neural Networks for instance segmentation and 6D object pose estimation with the RGB-D input stream to achieve fast and precise 6D object pose and velocity tracking. We test our method on a newly introduced photorealistic dataset, Fast-YCB, which comprises fast moving objects from the YCB model set, and on the dataset for object and hand pose estimation HO-3D. Results demonstrate that our approach outperforms state-of-the-art methods for 6D object pose tracking, while also providing 6D object velocity tracking. A video showing the experiments is provided as supplementary material.
Abstract:Several object detection methods have recently been proposed in the literature, the vast majority based on Deep Convolutional Neural Networks (DCNNs). Such architectures have been shown to achieve remarkable performance, at the cost of computationally expensive batch training and extensive labeling. These methods have important limitations for robotics: Learning solely on off-line data may introduce biases (the so-called domain shift), and prevents adaptation to novel tasks. In this work, we investigate how weakly-supervised learning can cope with these problems. We compare several techniques for weakly-supervised learning in detection pipelines to reduce model (re)training costs without compromising accuracy. In particular, we show that diversity sampling for constructing active learning queries and strong positives selection for self-supervised learning enable significant annotation savings and improve domain shift adaptation. By integrating our strategies into a hybrid DCNN/FALKON on-line detection pipeline [1], our method is able to be trained and updated efficiently with few labels, overcoming limitations of previous work. We experimentally validate and benchmark our method on challenging robotic object detection tasks under domain shift.
Abstract:Object segmentation is a key component in the visual system of a robot that performs tasks like grasping and object manipulation, especially in presence of occlusions. Like many other Computer Vision tasks, the adoption of deep architectures has made available algorithms that perform this task with remarkable performance. However, adoption of such algorithms in robotics is hampered by the fact that training requires large amount of computing time and it cannot be performed on-line. In this work, we propose a novel architecture for object segmentation, that overcomes this problem and provides comparable performance in a fraction of the time required by the state-of-the-art methods. Our approach is based on a pre-trained Mask R-CNN, in which various layers have been replaced with a set of classifiers and regressors that are retrained for a new task. We employ an efficient Kernel-based method that allows for fast training on large scale problems. Our approach is validated on the YCB-Video dataset which is widely adopted in the Computer Vision and Robotics community, demonstrating that we can achieve and even surpass performance of the state-of-the-art, with a significant reduction (${\sim}6\times$) of the training time. The code will be released upon acceptance.
Abstract:Object detection is a fundamental task for robots to operate in unstructured environments. Today, there are several deep learning algorithms that solve this task with remarkable performance. Unfortunately, training such systems requires several hours of GPU time. For robots, to successfully adapt to changes in the environment or learning new objects, it is also important that object detectors can be re-trained in a short amount of time. A recent method [1] proposes an architecture that leverages on the powerful representation of deep learning descriptors, while permitting fast adaptation time. Leveraging on the natural decomposition of the task in (i) regions candidate generation, (ii) feature extraction and (iii) regions classification, this method performs fast adaptation of the detector, by only re-training the classification layer. This shortens training time while maintaining state-of-the-art performance. In this paper, we firstly demonstrate that a further boost in accuracy can be obtained by adapting, in addition, the regions candidate generation on the task at hand. Secondly, we extend the object detection system presented in [1] with the proposed fast learning approach, showing experimental evidence on the improvement provided in terms of speed and accuracy on two different robotics datasets. The code to reproduce the experiments is publicly available on GitHub.
Abstract:We report on an extensive study of the benefits and limitations of current deep learning approaches to object recognition in robot vision scenarios, introducing a novel dataset used for our investigation. To avoid the biases in currently available datasets, we consider a natural human-robot interaction setting to design a data-acquisition protocol for visual object recognition on the iCub humanoid robot. Analyzing the performance of off-the-shelf models trained off-line on large-scale image retrieval datasets, we show the necessity for knowledge transfer. We evaluate different ways in which this last step can be done, and identify the major bottlenecks affecting robotic scenarios. By studying both object categorization and identification problems, we highlight key differences between object recognition in robotics applications and in image retrieval tasks, for which the considered deep learning approaches have been originally designed. In a nutshell, our results confirm the remarkable improvements yield by deep learning in this setting, while pointing to specific open challenges that need be addressed for seamless deployment in robotics.
Abstract:Latest deep learning methods for object detection provide remarkable performance, but have limits when used in robotic applications. One of the most relevant issues is the long training time, which is due to the large size and imbalance of the associated training sets, characterized by few positive and a large number of negative examples (i.e. background). Proposed approaches are based on end-to-end learning by back-propagation [22] or kernel methods trained with Hard Negatives Mining on top of deep features [8]. These solutions are effective, but prohibitively slow for on-line applications. In this paper we propose a novel pipeline for object detection that overcomes this problem and provides comparable performance, with a 60x training speedup. Our pipeline combines (i) the Region Proposal Network and the deep feature extractor from [22] to efficiently select candidate RoIs and encode them into powerful representations, with (ii) the FALKON [23] algorithm, a novel kernel-based method that allows fast training on large scale problems (millions of points). We address the size and imbalance of training data by exploiting the stochastic subsampling intrinsic into the method and a novel, fast, bootstrapping approach. We assess the effectiveness of the approach on a standard Computer Vision dataset (PASCAL VOC 2007 [5]) and demonstrate its applicability to a real robotic scenario with the iCubWorld Transformations [18] dataset.
Abstract:We consider object recognition in the context of lifelong learning, where a robotic agent learns to discriminate between a growing number of object classes as it accumulates experience about the environment. We propose an incremental variant of the Regularized Least Squares for Classification (RLSC) algorithm, and exploit its structure to seamlessly add new classes to the learned model. The presented algorithm addresses the problem of having an unbalanced proportion of training examples per class, which occurs when new objects are presented to the system for the first time. We evaluate our algorithm on both a machine learning benchmark dataset and two challenging object recognition tasks in a robotic setting. Empirical evidence shows that our approach achieves comparable or higher classification performance than its batch counterpart when classes are unbalanced, while being significantly faster.