Abstract:The ability of executing multiple tasks simultaneously is an important feature of redundant robotic systems. As a matter of fact, complex behaviors can often be obtained as a result of the execution of several tasks. Moreover, in safety-critical applications, tasks designed to ensure the safety of the robot and its surroundings have to be executed along with other nominal tasks. In such cases, it is also important to prioritize the former over the latter. In this paper, we formalize the definition of extended set-based tasks, i.e., tasks which can be executed by rendering subsets of the task space asymptotically stable or forward invariant. We propose a mathematical representation of such tasks that allows for the execution of more complex and time-varying prioritized stacks of tasks using kinematic and dynamic robot models alike. We present and analyze an optimization-based framework which is computationally efficient, accounts for input bounds, and allows for the stable execution of time-varying prioritized stacks of extended set-based tasks. The proposed framework is validated using extensive simulations and experiments with robotic manipulators.
Abstract:This paper presents a constrained-optimization formulation for the prioritized execution of learned robot tasks. The framework lends itself to the execution of tasks encoded by value functions, such as tasks learned using the reinforcement learning paradigm. The tasks are encoded as constraints of a convex optimization program by using control Lyapunov functions. Moreover, an additional constraint is enforced in order to specify relative priorities between the tasks. The proposed approach is showcased in simulation using a team of mobile robots executing coordinated multi-robot tasks.
Abstract:This paper describes the methodology and outcomes of a series of educational events conducted in 2021 which leveraged robot swarms to educate high-school and university students about epidemiological models and how they can inform societal and governmental policies. With a specific focus on the COVID-19 pandemic, the events consisted of 4 online and 3 in-person workshops where students had the chance to interact with a swarm of 20 custom-built brushbots -- small-scale vibration-driven robots optimized for portability and robustness. Through the analysis of data collected during a post-event survey, this paper shows how the events positively impacted the students' views on the scientific method to guide real-world decision making, as well as their interest in robotics.
Abstract:In the context of constraint-driven control of multi-robot systems, in this paper, we propose an optimization-based framework that is able to ensure resilience and energy-awareness of teams of robots. The approach is based on a novel, frame-theoretic, measure of resilience which allows us to analyze and enforce resilient behaviors of multi-robot systems. The properties of resilience and energy-awareness are encoded as constraints of a convex optimization program which is used to synthesize the robot control inputs. This allows for the combination of such properties with the execution of coordinated tasks to achieve resilient and energy-aware robot operations. The effectiveness of the proposed method is illustrated in a simulated scenario where a team of robots is deployed to execute two tasks subject to energy and resilience constraints.
Abstract:This paper presents an approach to deal with safety of dynamical systems in presence of multiple non-convex unsafe sets. While optimal control and model predictive control strategies can be employed in these scenarios, they suffer from high computational complexity in case of general nonlinear systems. Leveraging control barrier functions, on the other hand, results in computationally efficient control algorithms. Nevertheless, when safety guarantees have to be enforced alongside stability objectives, undesired asymptotically stable equilibrium points have been shown to arise. We propose a computationally efficient optimization-based approach which allows us to ensure safety of dynamical systems without introducing undesired equilibria even in presence of multiple non-convex unsafe sets. The developed control algorithm is showcased in simulation and in a real robot navigation application.
Abstract:In the context of heterogeneous multi-robot teams deployed for executing multiple tasks, this paper develops an energy-aware framework for allocating tasks to robots in an online fashion. With a primary focus on long-duration autonomy applications, we opt for a survivability-focused approach. Towards this end, the task prioritization and execution -- through which the allocation of tasks to robots is effectively realized -- are encoded as constraints within an optimization problem aimed at minimizing the energy consumed by the robots at each point in time. In this context, an allocation is interpreted as a prioritization of a task over all others by each of the robots. Furthermore, we present a novel framework to represent the heterogeneous capabilities of the robots, by distinguishing between the features available on the robots, and the capabilities enabled by these features. By embedding these descriptions within the optimization problem, we make the framework resilient to situations where environmental conditions make certain features unsuitable to support a capability and when component failures on the robots occur. We demonstrate the efficacy and resilience of the proposed approach in a variety of use-case scenarios, consisting of simulations and real robot experiments.
Abstract:Applications that require multi-robot systems to operate independently for extended periods of time in unknown or unstructured environments face a broad set of challenges, such as hardware degradation, changing weather patterns, or unfamiliar terrain. To operate effectively under these changing conditions, algorithms developed for long-term autonomy applications require a stronger focus on robustness. Consequently, this work considers the ability to satisfy the operation-critical constraints of a disturbed system in a modular fashion, which means compatibility with different system objectives and disturbance representations. Toward this end, this paper introduces a controller-synthesis approach to constraint satisfaction for disturbed control-affine dynamical systems by utilizing Control Barrier Functions (CBFs). The aforementioned framework is constructed by modelling the disturbance as a union of convex hulls and leveraging previous work on CBFs for differential inclusions. This method of disturbance modeling grants compatibility with different disturbance-estimation methods. For example, this work demonstrates how a disturbance learned via a Gaussian process may be utilized in the proposed framework. These estimated disturbances are incorporated into the proposed controller-synthesis framework which is then tested on a fleet of robots in different scenarios.
Abstract:In this paper, we present a way of enforcing safety and passivity properties of robot teleoperation systems, where a human operator interacts with a dynamical system modeling the robot. The approach does so in a holistic fashion, by combining safety and passivity constraints in a single optimization-based controller which effectively filters the desired control input before supplying it to the system. The result is a safety and passivity filter implemented as a convex quadratic program which can be solved efficiently and employed in an online fashion in many robotic teleoperation applications. Simulation results show the benefits of the approach developed in this paper applied to the human teleoperation of a second-order dynamical system.
Abstract:Multi-robot task allocation is a ubiquitous problem in robotics due to its applicability in a variety of scenarios. Adaptive task-allocation algorithms account for unknown disturbances and unpredicted phenomena in the environment where robots are deployed to execute tasks. However, this adaptivity typically comes at the cost of requiring precise knowledge of robot models in order to evaluate the allocation effectiveness and to adjust the task assignment online. As such, environmental disturbances can significantly degrade the accuracy of the models which in turn negatively affects the quality of the task allocation. In this paper, we leverage Gaussian processes, differential inclusions, and robust control barrier functions to learn environmental disturbances in order to guarantee robust task execution. We show the implementation and the effectiveness of the proposed framework on a real multi-robot system.
Abstract:For multi-robot teams with heterogeneous capabilities, typical task allocation methods assign tasks to robots based on the suitability of the robots to perform certain tasks as well as the requirements of the task itself. However, in real-world deployments of robot teams, the suitability of a robot might be unknown prior to deployment, or might vary due to changing environmental conditions. This paper presents an adaptive task allocation and task execution framework which allows individual robots to prioritize among tasks while explicitly taking into account their efficacy at performing the tasks---the parameters of which might be unknown before deployment and/or might vary over time. Such a \emph{specialization} parameter---encoding the effectiveness of a given robot towards a task---is updated on-the-fly, allowing our algorithm to reassign tasks among robots with the aim of executing them. The developed framework requires no explicit model of the changing environment or of the unknown robot capabilities---it only takes into account the progress made by the robots at completing the tasks. Simulations and experiments demonstrate the efficacy of the proposed approach during variations in environmental conditions and when robot capabilities are unknown before deployment.