Abstract:Although radar and communications signal classification are usually treated separately, they share similar characteristics, and methods applied in one domain can be potentially applied in the other. We propose a simple and unified scheme for the classification of radar and communications signals using Long Short-Term Memory (LSTM) neural networks. This proposal provides an improvement of the state of the art on radar signals where LSTM models are starting to be applied within schemes of higher complexity. To date, there is no standard public dataset for radar signals. Therefore, we propose DeepRadar2022, a radar dataset used in our systematic evaluations that is available publicly and will facilitate a standard comparison between methods.
Abstract:Deep learning approaches for semantic segmentation rely primarily on supervised learning approaches and require substantial efforts in producing pixel-level annotations. Further, such approaches may perform poorly when applied to unseen image domains. To cope with these limitations, both unsupervised domain adaptation (UDA) with full source supervision but without target supervision and semi-supervised learning (SSL) with partial supervision have been proposed. While such methods are effective at aligning different feature distributions, there is still a need to efficiently exploit unlabeled data to address the performance gap with respect to fully-supervised methods. In this paper we address semi-supervised domain adaptation (SSDA) for semantic segmentation, where a large amount of labeled source data as well as a small amount of labeled target data are available. We propose a novel and effective two-step semi-supervised dual-domain adaptation (SSDDA) approach to address both cross- and intra-domain gaps in semantic segmentation. The proposed framework is comprised of two mixing modules. First, we conduct a cross-domain adaptation via an image-level mixing strategy, which learns to align the distribution shift of features between the source data and target data. Second, intra-domain adaptation is achieved using a separate student-teacher network which is built to generate category-level data augmentation by mixing unlabeled target data in a way that respects predicted object boundaries. We demonstrate that the proposed approach outperforms state-of-the-art methods on two common synthetic-to-real semantic segmentation benchmarks. An extensive ablation study is provided to further validate the effectiveness of our approach.
Abstract:Semantic segmentation using convolutional neural networks (CNN) is a crucial component in image analysis. Training a CNN to perform semantic segmentation requires a large amount of labeled data, where the production of such labeled data is both costly and labor intensive. Semi-supervised learning algorithms address this issue by utilizing unlabeled data and so reduce the amount of labeled data needed for training. In particular, data augmentation techniques such as CutMix and ClassMix generate additional training data from existing labeled data. In this paper we propose a new approach for data augmentation, termed ComplexMix, which incorporates aspects of CutMix and ClassMix with improved performance. The proposed approach has the ability to control the complexity of the augmented data while attempting to be semantically-correct and address the tradeoff between complexity and correctness. The proposed ComplexMix approach is evaluated on a standard dataset for semantic segmentation and compared to other state-of-the-art techniques. Experimental results show that our method yields improvement over state-of-the-art methods on standard datasets for semantic image segmentation.
Abstract:Semantic segmentation has achieved significant advances in recent years. While deep neural networks perform semantic segmentation well, their success rely on pixel level supervision which is expensive and time-consuming. Further, training using data from one domain may not generalize well to data from a new domain due to a domain gap between data distributions in the different domains. This domain gap is particularly evident in aerial images where visual appearance depends on the type of environment imaged, season, weather, and time of day when the environment is imaged. Subsequently, this distribution gap leads to severe accuracy loss when using a pretrained segmentation model to analyze new data with different characteristics. In this paper, we propose a novel unsupervised domain adaptation framework to address domain shift in the context of aerial semantic image segmentation. To this end, we solve the problem of domain shift by learn the soft label distribution difference between the source and target domains. Further, we also apply entropy minimization on the target domain to produce high-confident prediction rather than using high-confident prediction by pseudo-labeling. We demonstrate the effectiveness of our domain adaptation framework using the challenge image segmentation dataset of ISPRS, and show improvement over state-of-the-art methods in terms of various metrics.
Abstract:Optimizing the discriminator in Generative Adversarial Networks (GANs) to completion in the inner training loop is computationally prohibitive, and on finite datasets would result in overfitting. To address this, a common update strategy is to alternate between k optimization steps for the discriminator D and one optimization step for the generator G. This strategy is repeated in various GAN algorithms where k is selected empirically. In this paper, we show that this update strategy is not optimal in terms of accuracy and convergence speed, and propose a new update strategy for Wasserstein GANs (WGAN) and other GANs using the WGAN loss(e.g. WGAN-GP, Deblur GAN, and Super-resolution GAN). The proposed update strategy is based on a loss change ratio comparison of G and D. We demonstrate that the proposed strategy improves both convergence speed and accuracy.
Abstract:Generating images from word descriptions is a challenging task. Generative adversarial networks(GANs) are shown to be able to generate realistic images of real-life objects. In this paper, we propose a new neural network architecture of LSTM Conditional Generative Adversarial Networks to generate images of real-life objects. Our proposed model is trained on the Oxford-102 Flowers and Caltech-UCSD Birds-200-2011 datasets. We demonstrate that our proposed model produces the better results surpassing other state-of-art approaches.
Abstract:Using a layered representation for motion estimation has the advantage of being able to cope with discontinuities and occlusions. In this paper, we learn to estimate optical flow by combining a layered motion representation with deep learning. Instead of pre-segmenting the image to layers, the proposed approach automatically generates a layered representation of optical flow using the proposed soft-mask module. The essential components of the soft-mask module are maxout and fuse operations, which enable a disjoint layered representation of optical flow and more accurate flow estimation. We show that by using masks the motion estimate results in a quadratic function of input features in the output layer. The proposed soft-mask module can be added to any existing optical flow estimation networks by replacing their flow output layer. In this work, we use FlowNet as the base network to which we add the soft-mask module. The resulting network is tested on three well-known benchmarks with both supervised and unsupervised flow estimation tasks. Evaluation results show that the proposed network achieve better results compared with the original FlowNet.
Abstract:This paper presents a novel approach for lecture video indexing using a boosted deep convolutional neural network system. The indexing is performed by matching high quality slide images, for which text is either known or extracted, to lower resolution video frames with possible noise, perspective distortion, and occlusions. We propose a deep neural network integrated with a boosting framework composed of two sub-networks targeting feature extraction and similarity determination to perform the matching. The trained network is given as input a pair of slide image and a candidate video frame image and produces the similarity between them. A boosting framework is integrated into our proposed network during the training process. Experimental results show that the proposed approach is much more capable of handling occlusion, spatial transformations, and other types of noises when compared with known approaches.
Abstract:Handling imbalanced datasets is a challenging problem that if not treated correctly results in reduced classification performance. Imbalanced datasets are commonly handled using minority oversampling, whereas the SMOTE algorithm is a successful oversampling algorithm with numerous extensions. SMOTE extensions do not have a theoretical guarantee during training to work better than SMOTE and in many instances their performance is data dependent. In this paper we propose a novel extension to the SMOTE algorithm with a theoretical guarantee for improved classification performance. The proposed approach considers the classification performance of both the majority and minority classes. In the proposed approach CGMOS (Certainty Guided Minority OverSampling) new data points are added by considering certainty changes in the dataset. The paper provides a proof that the proposed algorithm is guaranteed to work better than SMOTE for training data. Further experimental results on 30 real-world datasets show that CGMOS works better than existing algorithms when using 6 different classifiers.
Abstract:Learning from synthetic data has many important and practical applications. An example of application is photo-sketch recognition. Using synthetic data is challenging due to the differences in feature distributions between synthetic and real data, a phenomenon we term synthetic gap. In this paper, we investigate and formalize a general framework-Stacked Multichannel Autoencoder (SMCAE) that enables bridging the synthetic gap and learning from synthetic data more efficiently. In particular, we show that our SMCAE can not only transform and use synthetic data on the challenging face-sketch recognition task, but that it can also help simulate real images, which can be used for training classifiers for recognition. Preliminary experiments validate the effectiveness of the framework.