Abstract:The enormous demand for seafood products has led to exploitation of marine resources and near-extinction of some species. In particular, overfishing is one the main issues in sustainable marine development. In alignment with the protection of marine resources and sustainable fishing, this study proposes to advance fish classification techniques that support identifying protected fish species using state-of-the-art machine learning. We use a custom modification of the MobileNet model to design a lightweight classifier called M-MobileNet that is capable of running on limited hardware. As part of the study, we compiled a labeled dataset of 37,462 images of fish found in the waters of the Indonesian archipelago. The proposed model is trained on the dataset to classify images of the captured fish into their species and give recommendations on whether they are consumable or not. Our modified MobileNet model uses only 50\% of the top layer parameters with about 42% GTX 860M utility and achieves up to 97% accuracy in fish classification and determining its consumability. Given the limited computing capacity available on many fishing vessels, the proposed model provides a practical solution to on-site fish classification. In addition, synchronized implementation of the proposed model on multiple vessels can supply valuable information about the movement and location of different species of fish.
Abstract:Quadruped robots are currently used in industrial robotics as mechanical aid to automate several routine tasks. However, presently, the usage of such a robot in a domestic setting is still very much a part of the research. This paper discusses the understanding and virtual simulation of such a robot capable of detecting and understanding human emotions, generating its gait, and responding via sounds and expression on a screen. To this end, we use a combination of reinforcement learning and software engineering concepts to simulate a quadruped robot that can understand emotions, navigate through various terrains and detect sound sources, and respond to emotions using audio-visual feedback. This paper aims to establish the framework of simulating a quadruped robot that is emotionally intelligent and can primarily respond to audio-visual stimuli using motor or audio response. The emotion detection from the speech was not as performant as ERANNs or Zeta Policy learning, still managing an accuracy of 63.5%. The video emotion detection system produced results that are almost at par with the state of the art, with an accuracy of 99.66%. Due to its "on-policy" learning process, the PPO algorithm was extremely rapid to learn, allowing the simulated dog to demonstrate a remarkably seamless gait across the different cadences and variations. This enabled the quadruped robot to respond to generated stimuli, allowing us to conclude that it functions as predicted and satisfies the aim of this work.
Abstract:Feature selection is an important and active field of research in machine learning and data science. Our goal in this paper is to propose a collection of synthetic datasets that can be used as a common reference point for feature selection algorithms. Synthetic datasets allow for precise evaluation of selected features and control of the data parameters for comprehensive assessment. The proposed datasets are based on applications from electronics in order to mimic real life scenarios. To illustrate the utility of the proposed data we employ one of the datasets to test several popular feature selection algorithms. The datasets are made publicly available on GitHub and can be used by researchers to evaluate feature selection algorithms.
Abstract:Imbalanced data is a frequently encountered problem in machine learning. Despite a vast amount of literature on sampling techniques for imbalanced data, there is a limited number of studies that address the issue of the optimal sampling ratio. In this paper, we attempt to fill the gap in the literature by conducting a large scale study of the effects of sampling ratio on classification accuracy. We consider 10 popular sampling methods and evaluate their performance over a range of ratios based on 20 datasets. The results of the numerical experiments suggest that the optimal sampling ratio is between 0.7 and 0.8 albeit the exact ratio varies depending on the dataset. Furthermore, we find that while factors such the original imbalance ratio or the number of features do not play a discernible role in determining the optimal ratio, the number of samples in the dataset may have a tangible effect.
Abstract:Imbalanced data occurs in a wide range of scenarios. The skewed distribution of the target variable elicits bias in machine learning algorithms. One of the popular methods to combat imbalanced data is to artificially balance the data through resampling. In this paper, we compare the efficacy of a recently proposed kernel density estimation (KDE) sampling technique in the context of artificial neural networks. We benchmark the KDE sampling method against two base sampling techniques and perform comparative experiments using 8 datasets and 3 neural networks architectures. The results show that KDE sampling produces the best performance on 6 out of 8 datasets. However, it must be used with caution on image datasets. We conclude that KDE sampling is capable of significantly improving the performance of neural networks.
Abstract:In this paper, we apply a fusion machine learning method to construct an automatic intrusion detection system. Concretely, we employ the orthogonal variance decomposition technique to identify the relevant features in network traffic data. The selected features are used to build a deep neural network for intrusion detection. The proposed algorithm achieves 100% detection accuracy in identifying DDoS attacks. The test results indicate a great potential of the proposed method.
Abstract:In this paper, we analyze existing feature selection methods to identify the key elements of network traffic data that allow intrusion detection. In addition, we propose a new feature selection method that addresses the challenge of considering continuous input features and discrete target values. We show that the proposed method performs well against the benchmark selection methods. We use our findings to develop a highly effective machine learning-based detection systems that achieves 99.9% accuracy in distinguishing between DDoS and benign signals. We believe that our results can be useful to experts who are interested in designing and building automated intrusion detection systems.
Abstract:In this paper, we compare various approaches to stock price prediction using neural networks. We analyze the performance fully connected, convolutional, and recurrent architectures in predicting the next day value of S&P 500 index based on its previous values. We further expand our analysis by including three different optimization techniques: Stochastic Gradient Descent, Root Mean Square Propagation, and Adaptive Moment Estimation. The numerical experiments reveal that a single layer recurrent neural network with RMSprop optimizer produces optimal results with validation and test Mean Absolute Error of 0.0150 and 0.0148 respectively.
Abstract:Stock price prediction has been the focus of a large amount of research but an acceptable solution has so far escaped academics. Recent advances in deep learning have motivated researchers to apply neural networks to stock prediction. In this paper, we propose a convolution-based neural network model for predicting the future value of the S&P 500 index. The proposed model is capable of predicting the next-day direction of the index based on the previous values of the index. Experiments show that our model outperforms a number of benchmarks achieving an accuracy rate of over 55%.
Abstract:The COVID-19 pandemic has galvanized the machine learning community to create new solutions that can help in the fight against the virus. The body of literature related to applications of machine learning and artificial intelligence to COVID-19 is constantly growing. The goal of this article is to present the latest advances in machine learning research applied to COVID-19. We cover four major areas of research: forecasting, medical diagnostics, drug development, and contact tracing. We review and analyze the most successful state of the art studies. In contrast to other existing surveys on the subject, our article presents a high level overview of the current research that is sufficiently detailed to provide an informed insight.