Abstract:In this paper, we apply a fusion machine learning method to construct an automatic intrusion detection system. Concretely, we employ the orthogonal variance decomposition technique to identify the relevant features in network traffic data. The selected features are used to build a deep neural network for intrusion detection. The proposed algorithm achieves 100% detection accuracy in identifying DDoS attacks. The test results indicate a great potential of the proposed method.
Abstract:In this paper, we analyze existing feature selection methods to identify the key elements of network traffic data that allow intrusion detection. In addition, we propose a new feature selection method that addresses the challenge of considering continuous input features and discrete target values. We show that the proposed method performs well against the benchmark selection methods. We use our findings to develop a highly effective machine learning-based detection systems that achieves 99.9% accuracy in distinguishing between DDoS and benign signals. We believe that our results can be useful to experts who are interested in designing and building automated intrusion detection systems.