Abstract:We present SMPLOlympics, a collection of physically simulated environments that allow humanoids to compete in a variety of Olympic sports. Sports simulation offers a rich and standardized testing ground for evaluating and improving the capabilities of learning algorithms due to the diversity and physically demanding nature of athletic activities. As humans have been competing in these sports for many years, there is also a plethora of existing knowledge on the preferred strategy to achieve better performance. To leverage these existing human demonstrations from videos and motion capture, we design our humanoid to be compatible with the widely-used SMPL and SMPL-X human models from the vision and graphics community. We provide a suite of individual sports environments, including golf, javelin throw, high jump, long jump, and hurdling, as well as competitive sports, including both 1v1 and 2v2 games such as table tennis, tennis, fencing, boxing, soccer, and basketball. Our analysis shows that combining strong motion priors with simple rewards can result in human-like behavior in various sports. By providing a unified sports benchmark and baseline implementation of state and reward designs, we hope that SMPLOlympics can help the control and animation communities achieve human-like and performant behaviors.
Abstract:This paper introduces Alympics, a platform that leverages Large Language Model (LLM) agents to facilitate investigations in game theory. By employing LLMs and autonomous agents to simulate human behavior and enable multi-agent collaborations, we can construct realistic and dynamic models of human interactions for game theory hypothesis formulating and testing. To demonstrate this, we present and implement a survival game involving unequal competition for limited resources. Through manipulation of resource availability and agent personalities, we observe how different agents engage in the competition and adapt their strategies. The use of LLM agents in game theory research offers significant advantages, including simulating realistic behavior, providing a controlled, scalable, and reproducible environment. Our work highlights the potential of LLM agents in enhancing the understanding of strategic decision-making within complex socioeconomic contexts. All codes are available at https://github.com/microsoft/Alympics