Abstract:Multimodal Relation Extraction is crucial for constructing flexible and realistic knowledge graphs. Recent studies focus on extracting the relation type with entity pairs present in different modalities, such as one entity in the text and another in the image. However, existing approaches require entities and objects given beforehand, which is costly and impractical. To address the limitation, we propose a novel task, Multimodal Entity-Object Relational Triple Extraction, which aims to extract all triples (entity span, relation, object region) from image-text pairs. To facilitate this study, we modified a multimodal relation extraction dataset MORE, which includes 21 relation types, to create a new dataset containing 20,264 triples, averaging 5.75 triples per image-text pair. Moreover, we propose QEOT, a query-based model with a selective attention mechanism, to dynamically explore the interaction and fusion of textual and visual information. In particular, the proposed method can simultaneously accomplish entity extraction, relation classification, and object detection with a set of queries. Our method is suitable for downstream applications and reduces error accumulation due to the pipeline-style approaches. Extensive experimental results demonstrate that our proposed method outperforms the existing baselines by 8.06% and achieves state-of-the-art performance.
Abstract:Relational triple extraction is crucial work for the automatic construction of knowledge graphs. Existing methods only construct shallow representations from a token or token pair-level. However, previous works ignore local spatial dependencies of relational triples, resulting in a weakness of entity pair boundary detection. To tackle this problem, we propose a novel Region-based Table Filling method (RTF). We devise a novel region-based tagging scheme and bi-directional decoding strategy, which regard each relational triple as a region on the relation-specific table, and identifies triples by determining two endpoints of each region. We also introduce convolution to construct region-level table representations from a spatial perspective which makes triples easier to be captured. In addition, we share partial tagging scores among different relations to improve learning efficiency of relation classifier. Experimental results show that our method achieves state-of-the-art with better generalization capability on three variants of two widely used benchmark datasets.
Abstract:Large language models have exhibited robust performance across diverse natural language processing tasks. This report introduces TechGPT-2.0, a project designed to enhance the capabilities of large language models specifically in knowledge graph construction tasks, including named entity recognition (NER) and relationship triple extraction (RTE) tasks in NLP applications. Additionally, it serves as a LLM accessible for research within the Chinese open-source model community. We offer two 7B large language model weights and a QLoRA weight specialized for processing lengthy texts.Notably, TechGPT-2.0 is trained on Huawei's Ascend server. Inheriting all functionalities from TechGPT-1.0, it exhibits robust text processing capabilities, particularly in the domains of medicine and law. Furthermore, we introduce new capabilities to the model, enabling it to process texts in various domains such as geographical areas, transportation, organizations, literary works, biology, natural sciences, astronomical objects, and architecture. These enhancements also fortified the model's adeptness in handling hallucinations, unanswerable queries, and lengthy texts. This report provides a comprehensive and detailed introduction to the full fine-tuning process on Huawei's Ascend servers, encompassing experiences in Ascend server debugging, instruction fine-tuning data processing, and model training. Our code is available at https://github.com/neukg/TechGPT-2.0
Abstract:Although existing machine reading comprehension models are making rapid progress on many datasets, they are far from robust. In this paper, we propose an understanding-oriented machine reading comprehension model to address three kinds of robustness issues, which are over sensitivity, over stability and generalization. Specifically, we first use a natural language inference module to help the model understand the accurate semantic meanings of input questions so as to address the issues of over sensitivity and over stability. Then in the machine reading comprehension module, we propose a memory-guided multi-head attention method that can further well understand the semantic meanings of input questions and passages. Third, we propose a multilanguage learning mechanism to address the issue of generalization. Finally, these modules are integrated with a multi-task learning based method. We evaluate our model on three benchmark datasets that are designed to measure models robustness, including DuReader (robust) and two SQuAD-related datasets. Extensive experiments show that our model can well address the mentioned three kinds of robustness issues. And it achieves much better results than the compared state-of-the-art models on all these datasets under different evaluation metrics, even under some extreme and unfair evaluations. The source code of our work is available at: https://github.com/neukg/RobustMRC.
Abstract:Most existing multi-document machine reading comprehension models mainly focus on understanding the interactions between the input question and documents, but ignore following two kinds of understandings. First, to understand the semantic meaning of words in the input question and documents from the perspective of each other. Second, to understand the supporting cues for a correct answer from the perspective of intra-document and inter-documents. Ignoring these two kinds of important understandings would make the models oversee some important information that may be helpful for inding correct answers. To overcome this deiciency, we propose a deep understanding based model for multi-document machine reading comprehension. It has three cascaded deep understanding modules which are designed to understand the accurate semantic meaning of words, the interactions between the input question and documents, and the supporting cues for the correct answer. We evaluate our model on two large scale benchmark datasets, namely TriviaQA Web and DuReader. Extensive experiments show that our model achieves state-of-the-art results on both datasets.
Abstract:Tagging based relational triple extraction methods are attracting growing research attention recently. However, most of these methods take a unidirectional extraction framework that first extracts all subjects and then extracts objects and relations simultaneously based on the subjects extracted. This framework has an obvious deficiency that it is too sensitive to the extraction results of subjects. To overcome this deficiency, we propose a bidirectional extraction framework based method that extracts triples based on the entity pairs extracted from two complementary directions. Concretely, we first extract all possible subject-object pairs from two paralleled directions. These two extraction directions are connected by a shared encoder component, thus the extraction features from one direction can flow to another direction and vice versa. By this way, the extractions of two directions can boost and complement each other. Next, we assign all possible relations for each entity pair by a biaffine model. During training, we observe that the share structure will lead to a convergence rate inconsistency issue which is harmful to performance. So we propose a share-aware learning mechanism to address it. We evaluate the proposed model on multiple benchmark datasets. Extensive experimental results show that the proposed model is very effective and it achieves state-of-the-art results on all of these datasets. Moreover, experiments show that both the proposed bidirectional extraction framework and the share-aware learning mechanism have good adaptability and can be used to improve the performance of other tagging based methods. The source code of our work is available at: https://github.com/neukg/BiRTE.
Abstract:Table filling based relational triple extraction methods are attracting growing research interests due to their promising performance and their abilities on extracting triples from complex sentences. However, this kind of methods are far from their full potential because most of them only focus on using local features but ignore the global associations of relations and of token pairs, which increases the possibility of overlooking some important information during triple extraction. To overcome this deficiency, we propose a global feature-oriented triple extraction model that makes full use of the mentioned two kinds of global associations. Specifically, we first generate a table feature for each relation. Then two kinds of global associations are mined from the generated table features. Next, the mined global associations are integrated into the table feature of each relation. This "generate-mine-integrate" process is performed multiple times so that the table feature of each relation is refined step by step. Finally, each relation's table is filled based on its refined table feature, and all triples linked to this relation are extracted based on its filled table. We evaluate the proposed model on three benchmark datasets. Experimental results show our model is effective and it achieves state-of-the-art results on all of these datasets. The source code of our work is available at: https://github.com/neukg/GRTE.
Abstract:Neural conversation models have shown great potentials towards generating fluent and informative responses by introducing external background knowledge. Nevertheless, it is laborious to construct such knowledge-grounded dialogues, and existing models usually perform poorly when transfer to new domains with limited training samples. Therefore, building a knowledge-grounded dialogue system under the low-resource setting is a still crucial issue. In this paper, we propose a novel three-stage learning framework based on weakly supervised learning which benefits from large scale ungrounded dialogues and unstructured knowledge base. To better cooperate with this framework, we devise a variant of Transformer with decoupled decoder which facilitates the disentangled learning of response generation and knowledge incorporation. Evaluation results on two benchmarks indicate that our approach can outperform other state-of-the-art methods with less training data, and even in zero-resource scenario, our approach still performs well.
Abstract:Knowledge-grounded dialogue is a task of generating a fluent and informative response based on both conversation context and a collection of external knowledge, in which knowledge selection plays an important role and attracts more and more research interest. However, most existing models either select only one knowledge or use all knowledge for responses generation. The former may lose valuable information in discarded knowledge, while the latter may bring a lot of noise. At the same time, many approaches need to train the knowledge selector with knowledge labels that indicate ground-truth knowledge, but these labels are difficult to obtain and require a large number of manual annotations. Motivated by these issues, we propose Knoformer, a dialogue response generation model based on reinforcement learning, which can automatically select one or more related knowledge from the knowledge pool and does not need knowledge labels during training. Knoformer is evaluated on two knowledge-guided conversation datasets, and achieves state-of-the-art performance.
Abstract:Tagging based methods are one of the mainstream methods in relational triple extraction. However, most of them suffer from the class imbalance issue greatly. Here we propose a novel tagging based model that addresses this issue from following two aspects. First, at the model level, we propose a three-step extraction framework that can reduce the total number of samples greatly, which implicitly decreases the severity of the mentioned issue. Second, at the intra-model level, we propose a confidence threshold based cross entropy loss that can directly neglect some samples in the major classes. We evaluate the proposed model on NYT and WebNLG. Extensive experiments show that it can address the mentioned issue effectively and achieves state-of-the-art results on both datasets. The source code of our model is available at: https://github.com/neukg/ConCasRTE.