Abstract:Although LiDAR sensors are crucial for autonomous systems due to providing precise depth information, they struggle with capturing fine object details, especially at a distance, due to sparse and non-uniform data. Recent advances introduced pseudo-LiDAR, i.e., synthetic dense point clouds, using additional modalities such as cameras to enhance 3D object detection. We present a novel LiDAR-only framework that augments raw scans with denser pseudo point clouds by solely relying on LiDAR sensors and scene semantics, omitting the need for cameras. Our framework first utilizes a segmentation model to extract scene semantics from raw point clouds, and then employs a multi-modal domain translator to generate synthetic image segments and depth cues without real cameras. This yields a dense pseudo point cloud enriched with semantic information. We also introduce a new semantically guided projection method, which enhances detection performance by retaining only relevant pseudo points. We applied our framework to different advanced 3D object detection methods and reported up to 2.9% performance upgrade. We also obtained comparable results on the KITTI 3D object detection dataset, in contrast to other state-of-the-art LiDAR-only detectors.
Abstract:In this paper, we present a new approach for facial anonymization in images and videos, abbreviated as FIVA. Our proposed method is able to maintain the same face anonymization consistently over frames with our suggested identity-tracking and guarantees a strong difference from the original face. FIVA allows for 0 true positives for a false acceptance rate of 0.001. Our work considers the important security issue of reconstruction attacks and investigates adversarial noise, uniform noise, and parameter noise to disrupt reconstruction attacks. In this regard, we apply different defense and protection methods against these privacy threats to demonstrate the scalability of FIVA. On top of this, we also show that reconstruction attack models can be used for detection of deep fakes. Last but not least, we provide experimental results showing how FIVA can even enable face swapping, which is purely trained on a single target image.
Abstract:An autonomous service robot should be able to interact with its environment safely and robustly without requiring human assistance. Unstructured environments are challenging for robots since the exact prediction of outcomes is not always possible. Even when the robot behaviors are well-designed, the unpredictable nature of physical robot-object interaction may prevent success in object manipulation. Therefore, execution of a manipulation action may result in an undesirable outcome involving accidents or damages to the objects or environment. Situation awareness becomes important in such cases to enable the robot to (i) maintain the integrity of both itself and the environment, (ii) recover from failed tasks in the short term, and (iii) learn to avoid failures in the long term. For this purpose, robot executions should be continuously monitored, and failures should be detected and classified appropriately. In this work, we focus on detecting and classifying both manipulation and post-manipulation phase failures using the same exteroception setup. We cover a diverse set of failure types for primary tabletop manipulation actions. In order to detect these failures, we propose FINO-Net [1], a deep multimodal sensor fusion based classifier network. Proposed network accurately detects and classifies failures from raw sensory data without any prior knowledge. In this work, we use our extended FAILURE dataset [1] with 99 new multimodal manipulation recordings and annotate them with their corresponding failure types. FINO-Net achieves 0.87 failure detection and 0.80 failure classification F1 scores. Experimental results show that proposed architecture is also appropriate for real-time use.
Abstract:Robots are more capable of achieving manipulation tasks for everyday activities than before. But the safety of manipulation skills that robots employ is still an open problem. Considering all possible failures during skill learning increases the complexity of the process and restrains learning an optimal policy. Beyond that, in unstructured environments, it is not easy to enumerate all possible failures beforehand. In the context of safe skill manipulation, we reformulate skills as base and failure prevention skills where base skills aim at completing tasks and failure prevention skills focus on reducing the risk of failures to occur. Then, we propose a modular and hierarchical method for safe robot manipulation by augmenting base skills by learning failure prevention skills with reinforcement learning, forming a skill library to address different safety risks. Furthermore, a skill selection policy that considers estimated risks is used for the robot to select the best control policy for safe manipulation. Our experiments show that the proposed method achieves the given goal while ensuring safety by preventing failures. We also show that with the proposed method, skill learning is feasible, novel failures are easily adaptable, and our safe manipulation tools can be transferred to the real environment.
Abstract:This work presents a new depth- and semantics-aware conditional generative model, named TITAN-Next, for cross-domain image-to-image translation in a multi-modal setup between LiDAR and camera sensors. The proposed model leverages scene semantics as a mid-level representation and is able to translate raw LiDAR point clouds to RGB-D camera images by solely relying on semantic scene segments. We claim that this is the first framework of its kind and it has practical applications in autonomous vehicles such as providing a fail-safe mechanism and augmenting available data in the target image domain. The proposed model is evaluated on the large-scale and challenging Semantic-KITTI dataset, and experimental findings show that it considerably outperforms the original TITAN-Net and other strong baselines by 23.7$\%$ margin in terms of IoU.
Abstract:In this work, we present a new single-stage method for subject agnostic face swapping and identity transfer, named FaceDancer. We have two major contributions: Adaptive Feature Fusion Attention (AFFA) and Interpreted Feature Similarity Regularization (IFSR). The AFFA module is embedded in the decoder and adaptively learns to fuse attribute features and features conditioned on identity information without requiring any additional facial segmentation process. In IFSR, we leverage the intermediate features in an identity encoder to preserve important attributes such as head pose, facial expression, lighting, and occlusion in the target face, while still transferring the identity of the source face with high fidelity. We conduct extensive quantitative and qualitative experiments on various datasets and show that the proposed FaceDancer outperforms other state-of-the-art networks in terms of identityn transfer, while having significantly better pose preservation than most of the previous methods.
Abstract:Understanding of deformable object manipulations such as textiles is a challenge due to the complexity and high dimensionality of the problem. Particularly, the lack of a generic representation of semantic states (e.g., \textit{crumpled}, \textit{diagonally folded}) during a continuous manipulation process introduces an obstacle to identify the manipulation type. In this paper, we aim to solve the problem of semantic state estimation in cloth manipulation tasks. For this purpose, we introduce a new large-scale fully-annotated RGB image dataset showing various human demonstrations of different complicated cloth manipulations. We provide a set of baseline deep networks and benchmark them on the problem of semantic state estimation using our proposed dataset. Furthermore, we investigate the scalability of our semantic state estimation framework in robot monitoring tasks of long and complex cloth manipulations.
Abstract:Despite decades of research, understanding human manipulation activities is, and has always been, one of the most attractive and challenging research topics in computer vision and robotics. Recognition and prediction of observed human manipulation actions have their roots in the applications related to, for instance, human-robot interaction and robot learning from demonstration. The current research trend heavily relies on advanced convolutional neural networks to process the structured Euclidean data, such as RGB camera images. These networks, however, come with immense computational complexity to be able to process high dimensional raw data. Different from the related works, we here introduce a deep graph autoencoder to jointly learn recognition and prediction of manipulation tasks from symbolic scene graphs, instead of relying on the structured Euclidean data. Our network has a variational autoencoder structure with two branches: one for identifying the input graph type and one for predicting the future graphs. The input of the proposed network is a set of semantic graphs which store the spatial relations between subjects and objects in the scene. The network output is a label set representing the detected and predicted class types. We benchmark our new model against different state-of-the-art methods on two different datasets, MANIAC and MSRC-9, and show that our proposed model can achieve better performance. We also release our source code https://github.com/gamzeakyol/GNet.
Abstract:The compression of deep learning models is of fundamental importance in deploying such models to edge devices. Incorporating hardware model and application constraints during compression maximizes the benefits but makes it specifically designed for one case. Therefore, the compression needs to be automated. Searching for the optimal compression method parameters is considered an optimization problem. This article introduces a Multi-Objective Hardware-Aware Quantization (MOHAQ) method, which considers both hardware efficiency and inference error as objectives for mixed-precision quantization. The proposed method makes the evaluation of candidate solutions in a large search space feasible by relying on two steps. First, post-training quantization is applied for fast solution evaluation. Second, we propose a search technique named "beacon-based search" to retrain selected solutions only in the search space and use them as beacons to know the effect of retraining on other solutions. To evaluate the optimization potential, we chose a speech recognition model using the TIMIT dataset. The model is based on Simple Recurrent Unit (SRU) due to its considerable speedup over other recurrent units. We applied our method to run on two platforms: SiLago and Bitfusion. Experimental evaluations showed that SRU can be compressed up to 8x by post-training quantization without any significant increase in the error and up to 12x with only a 1.5 percentage point increase in error. On SiLago, the inference-only search found solutions that achieve 80\% and 64\% of the maximum possible speedup and energy saving, respectively, with a 0.5 percentage point increase in the error. On Bitfusion, with a constraint of a small SRAM size, beacon-based search reduced the error gain of inference-only search by 4 percentage points and increased the possible reached speedup to be 47x compared to the Bitfusion baseline.
Abstract:Smart Cities and Communities (SCC) constitute a new paradigm in urban development. SCC ideates on a data-centered society aiming at improving efficiency by automating and optimizing activities and utilities. Information and communication technology along with the internet of things enables data collection and with the help of artificial intelligence (AI) situation awareness can be obtained to feed the SCC actors with enriched knowledge. This paper describes AI perspectives in SCC and gives an overview of AI-based technologies used in traffic to enable road vehicle automation and smart traffic control. Perception, Smart Traffic Control and Driver Modelling are described along with open research challenges and standardization to help introduce advanced driver assistance systems in traffic. AI technologies provide accurate prediction and classifcation; however, the models do not provide any evidence on their output making them hard to trust for a human operator. In addition, there are currently no methods that can be used to describe requirements of how the data should be annotated in order to train an accurate model.