Abstract:Despite the widespread adoption of face recognition technology around the world, and its remarkable performance on current benchmarks, there are still several challenges that must be covered in more detail. This paper offers an overview of the Face Recognition Challenge in the Era of Synthetic Data (FRCSyn) organized at WACV 2024. This is the first international challenge aiming to explore the use of synthetic data in face recognition to address existing limitations in the technology. Specifically, the FRCSyn Challenge targets concerns related to data privacy issues, demographic biases, generalization to unseen scenarios, and performance limitations in challenging scenarios, including significant age disparities between enrollment and testing, pose variations, and occlusions. The results achieved in the FRCSyn Challenge, together with the proposed benchmark, contribute significantly to the application of synthetic data to improve face recognition technology.
Abstract:In this work, the novel Image Transformation Sequence Retrieval (ITSR) task is presented, in which a model must retrieve the sequence of transformations between two given images that act as source and target, respectively. Given certain characteristics of the challenge such as the multiplicity of a correct sequence or the correlation between consecutive steps of the process, we propose a solution to ITSR using a general model-based Reinforcement Learning such as Monte Carlo Tree Search (MCTS), which is combined with a deep neural network. Our experiments provide a benchmark in both synthetic and real domains, where the proposed approach is compared with supervised training. The results report that a model trained with MCTS is able to outperform its supervised counterpart in both the simplest and the most complex cases. Our work draws interesting conclusions about the nature of ITSR and its associated challenges.