Abstract:Imagine observing someone scratching their arm; to understand why, additional context would be necessary. However, spotting a mosquito nearby would immediately offer a likely explanation for the person's discomfort, thereby alleviating the need for further information. This example illustrates how subtle visual cues can challenge our cognitive skills and demonstrates the complexity of interpreting visual scenarios. To study these skills, we present Visual Riddles, a benchmark aimed to test vision and language models on visual riddles requiring commonsense and world knowledge. The benchmark comprises 400 visual riddles, each featuring a unique image created by a variety of text-to-image models, question, ground-truth answer, textual hint, and attribution. Human evaluation reveals that existing models lag significantly behind human performance, which is at 82\% accuracy, with Gemini-Pro-1.5 leading with 40\% accuracy. Our benchmark comes with automatic evaluation tasks to make assessment scalable. These findings underscore the potential of Visual Riddles as a valuable resource for enhancing vision and language models' capabilities in interpreting complex visual scenarios.
Abstract:We develop computational models to analyze court statements in order to assess judicial attitudes toward victims of sexual violence in the Israeli court system. The study examines the resonance of "rape myths" in the criminal justice system's response to sex crimes, in particular in judicial assessment of victim's credibility. We begin by formulating an ontology for evaluating judicial attitudes toward victim's credibility, with eight ordinal labels and binary categorizations. Second, we curate a manually annotated dataset for judicial assessments of victim's credibility in the Hebrew language, as well as a model that can extract credibility labels from court cases. The dataset consists of 855 verdict decision documents in sexual assault cases from 1990-2021, annotated with the help of legal experts and trained law students. The model uses a combined approach of syntactic and latent structures to find sentences that convey the judge's attitude towards the victim and classify them according to the credibility label set. Our ontology, data, and models will be made available upon request, in the hope they spur future progress in this judicial important task.