Abstract:Recent LLMs have shown remarkable success in following user instructions, yet handling instructions with multiple constraints remains a significant challenge. In this work, we introduce WildIFEval - a large-scale dataset of 12K real user instructions with diverse, multi-constraint conditions. Unlike prior datasets, our collection spans a broad lexical and topical spectrum of constraints, in natural user prompts. We categorize these constraints into eight high-level classes to capture their distribution and dynamics in real-world scenarios. Leveraging WildIFEval, we conduct extensive experiments to benchmark the instruction-following capabilities of leading LLMs. Our findings reveal that all evaluated models experience performance degradation with an increasing number of constraints. Thus, we show that all models have a large room for improvement on such tasks. Moreover, we observe that the specific type of constraint plays a critical role in model performance. We release our dataset to promote further research on instruction-following under complex, realistic conditions.
Abstract:Humans are influenced by how information is presented, a phenomenon known as the framing effect. Previous work has shown that LLMs may also be susceptible to framing but has done so on synthetic data and did not compare to human behavior. We introduce WildFrame, a dataset for evaluating LLM responses to positive and negative framing, in naturally-occurring sentences, and compare humans on the same data. WildFrame consists of 1,000 texts, first selecting real-world statements with clear sentiment, then reframing them in either positive or negative light, and lastly, collecting human sentiment annotations. By evaluating eight state-of-the-art LLMs on WildFrame, we find that all models exhibit framing effects similar to humans ($r\geq0.57$), with both humans and models being more influenced by positive rather than negative reframing. Our findings benefit model developers, who can either harness framing or mitigate its effects, depending on the downstream application.
Abstract:Various tasks, such as summarization, multi-hop question answering, or coreference resolution, are naturally phrased over collections of real-world documents. Such tasks present a unique set of challenges, revolving around the lack of coherent narrative structure across documents, which often leads to contradiction, omission, or repetition of information. Despite their real-world application and challenging properties, there is currently no benchmark which specifically measures the abilities of large language models (LLMs) on multi-document tasks. To bridge this gap, we present SEAM (a Stochastic Evaluation Approach for Multi-document tasks), a conglomerate benchmark over a diverse set of multi-document datasets, setting conventional evaluation criteria, input-output formats, and evaluation protocols. In particular, SEAM addresses the sensitivity of LLMs to minor prompt variations through repeated evaluations, where in each evaluation we sample uniformly at random the values of arbitrary factors (e.g., the order of documents). We evaluate different LLMs on SEAM finding that multi-document tasks pose a significant challenge for LLMs, even for state-of-the-art models with 70B parameters. In addition, we show that the stochastic approach uncovers underlying statistical trends which cannot be observed in a static benchmark. We hope that SEAM will spur progress via consistent and meaningful evaluation of multi-document tasks.
Abstract:Document collections of various domains, e.g., legal, medical, or financial, often share some underlying collection-wide structure, which captures information that can aid both human users and structure-aware models. We propose to identify the typical structure of document within a collection, which requires to capture recurring topics across the collection, while abstracting over arbitrary header paraphrases, and ground each topic to respective document locations. These requirements pose several challenges: headers that mark recurring topics frequently differ in phrasing, certain section headers are unique to individual documents and do not reflect the typical structure, and the order of topics can vary between documents. Subsequently, we develop an unsupervised graph-based method which leverages both inter- and intra-document similarities, to extract the underlying collection-wide structure. Our evaluations on three diverse domains in both English and Hebrew indicate that our method extracts meaningful collection-wide structure, and we hope that future work will leverage our method for multi-document applications and structure-aware models.
Abstract:Spurious correlations were found to be an important factor explaining model performance in various NLP tasks (e.g., gender or racial artifacts), often considered to be ''shortcuts'' to the actual task. However, humans tend to similarly make quick (and sometimes wrong) predictions based on societal and cognitive presuppositions. In this work we address the question: can we quantify the extent to which model biases reflect human behaviour? Answering this question will help shed light on model performance and provide meaningful comparisons against humans. We approach this question through the lens of the dual-process theory for human decision-making. This theory differentiates between an automatic unconscious (and sometimes biased) ''fast system'' and a ''slow system'', which when triggered may revisit earlier automatic reactions. We make several observations from two crowdsourcing experiments of gender bias in coreference resolution, using self-paced reading to study the ''fast'' system, and question answering to study the ''slow'' system under a constrained time setting. On real-world data humans make $\sim$3\% more gender-biased decisions compared to models, while on synthetic data models are $\sim$12\% more biased.