Abstract:The continued development of robots has enabled their wider usage in human surroundings. Robots are more trusted to make increasingly important decisions with potentially critical outcomes. Therefore, it is essential to consider the ethical principles under which robots operate. In this paper we examine how contrastive and non-contrastive explanations can be used in understanding the ethics of robot action plans. We build upon an existing ethical framework to allow users to make suggestions about plans and receive automatically generated contrastive explanations. Results of a user study indicate that the generated explanations help humans to understand the ethical principles that underlie a robot's plan.
Abstract:Changes in cardiovascular hemodynamics are closely related to the development of aortic regurgitation (AR), a type of valvular heart disease. Pressure gradients derived from blood flows are used to indicate AR onset and evaluate its severity. These metrics can be non-invasively obtained using four-dimensional (4D) flow magnetic resonance imaging (MRI), where accuracy is primarily dependent on spatial resolution. However, insufficient resolution often results from limitations in 4D flow MRI and complex AR hemodynamics. To address this, computational fluid dynamics simulations were transformed into synthetic 4D flow MRI data and used to train a variety of neural networks. These networks generated super resolution, full-field phase images with an upsample factor of 4. Results showed decreased velocity error, high structural similarity scores, and improved learning capabilities from previous work. Further validation was performed on two sets of in-vivo 4D flow MRI data and demonstrated success in de-noising flow images. This approach presents an opportunity to comprehensively analyse AR hemodynamics in a non-invasive manner.
Abstract:There is an increasing demand for piloted autonomous underwater vehicles (AUVs) to operate in polar ice conditions. At present, AUVs are deployed from ships and directly human-piloted in these regions, entailing a high carbon cost and limiting the scope of operations. A key requirement for long-term autonomous missions is a long-range route planning capability that is aware of the changing ice conditions. In this paper we address the problem of automating long-range route-planning for AUVs operating in the Southern Ocean. We present the route-planning method and results showing that efficient, ice-avoiding, long-distance traverses can be planned.
Abstract:Automated planners are computer tools that allow autonomous agents to make strategies and decisions by determining a set of actions for the agent that to take, which will carry a system from a given initial state to the desired goal state. Many planners are domain-independent, allowing their deployment in a variety of domains. Such is the broad family of OPTIC planners. These planners perform Forward Search and call a Linear Programming (LP) solver multiple times at every state to check for consistency and to set bounds on the numeric variables. These checks can be computationally costly, especially in real-life applications. This paper suggests a method for identifying information about the specific state being evaluated, allowing the formulation of the equations to facilitate better solver selection and faster LP solving. The usefulness of the method is demonstrated in six domains and is shown to enhance performance significantly.
Abstract:State-of-the-art temporal planners that support continuous numeric effects typically interweave search with scheduling to ensure temporal consistency. If such effects are linear, this process often makes use of Linear Programming (LP) to model the relationship between temporal constraints and conditions on numeric fluents that are subject to duration-dependent effects. While very effective on benchmark domains, this approach does not scale well when solving real-world problems that require long plans. We propose a set of techniques that allow the planner to compute LP consistency checks lazily where possible, significantly reducing the computation time required, thus allowing the planner to solve larger problem instances within an acceptable time-frame. We also propose an algorithm to perform duration-dependent goal checking more selectively. Furthermore, we propose an LP formulation with a smaller footprint that removes linearity restrictions on discrete effects applied within segments of the plan where a numeric fluent is not duration dependent. The effectiveness of these techniques is demonstrated on domains that use a mix of discrete and continuous effects, which is typical of real-world planning problems. The resultant planner is not only more efficient, but outperforms most state-of-the-art temporal-numeric and hybrid planners, in terms of both coverage and scalability.
Abstract:In this paper, we introduce an approach to validate the functional equivalence of planning domain models. Validating the functional equivalence of planning domain models is the problem of formally confirming that two planning domain models can be used to solve the same set of problems. The need for techniques to validate the functional equivalence of planning domain models has been highlighted in previous research and has applications in model learning, development and extension. We prove the soundness and completeness of our method. We also develop D-VAL, an automatic functional equivalence validation tool for planning domain models. Empirical evaluation shows that D-VAL validates the functional equivalence of most examined domains in less than five minutes. Additionally, we provide a benchmark to evaluate the feasibility and scalability of this and future related work.
Abstract:In automated planning, the need for explanations arises when there is a mismatch between a proposed plan and the user's expectation. We frame Explainable AI Planning in the context of the plan negotiation problem, in which a succession of hypothetical planning problems are generated and solved. The object of the negotiation is for the user to understand and ultimately arrive at a satisfactory plan. We present the results of a user study that demonstrates that when users ask questions about plans, those questions are contrastive, i.e. "why A rather than B?". We use the data from this study to construct a taxonomy of user questions that often arise during plan negotiation. We formally define our approach to plan negotiation through model restriction as an iterative process. This approach generates hypothetical problems and contrastive plans by restricting the model through constraints implied by user questions. We formally define model-based compilations in PDDL2.1 of each constraint derived from a user question in the taxonomy, and empirically evaluate the compilations in terms of computational complexity. The compilations were implemented as part of an explanation framework that employs iterative model restriction. We demonstrate its benefits in a second user study.
Abstract:The development of robotics and AI agents has enabled their wider usage in human surroundings. AI agents are more trusted to make increasingly important decisions with potentially critical outcomes. It is essential to consider the ethical consequences of the decisions made by these systems. In this paper, we present how contrastive explanations can be used for comparing the ethics of plans. We build upon an existing ethical framework to allow users to make suggestions to plans and receive contrastive explanations.
Abstract:As AI is increasingly being adopted into application solutions, the challenge of supporting interaction with humans is becoming more apparent. Partly this is to support integrated working styles, in which humans and intelligent systems cooperate in problem-solving, but also it is a necessary step in the process of building trust as humans migrate greater responsibility to such systems. The challenge is to find effective ways to communicate the foundations of AI-driven behaviour, when the algorithms that drive it are far from transparent to humans. In this paper we consider the opportunities that arise in AI planning, exploiting the model-based representations that form a familiar and common basis for communication with users, while acknowledging the gap between planning algorithms and human problem-solving.
Abstract:Although the use of metric fluents is fundamental to many practical planning problems, the study of heuristics to support fully automated planners working with these fluents remains relatively unexplored. The most widely used heuristic is the relaxation of metric fluents into interval-valued variables --- an idea first proposed a decade ago. Other heuristics depend on domain encodings that supply additional information about fluents, such as capacity constraints or other resource-related annotations. A particular challenge to these approaches is in handling interactions between metric fluents that represent exchange, such as the transformation of quantities of raw materials into quantities of processed goods, or trading of money for materials. The usual relaxation of metric fluents is often very poor in these situations, since it does not recognise that resources, once spent, are no longer available to be spent again. We present a heuristic for numeric planning problems building on the propositional relaxed planning graph, but using a mathematical program for numeric reasoning. We define a class of producer--consumer planning problems and demonstrate how the numeric constraints in these can be modelled in a mixed integer program (MIP). This MIP is then combined with a metric Relaxed Planning Graph (RPG) heuristic to produce an integrated hybrid heuristic. The MIP tracks resource use more accurately than the usual relaxation, but relaxes the ordering of actions, while the RPG captures the causal propositional aspects of the problem. We discuss how these two components interact to produce a single unified heuristic and go on to explore how further numeric features of planning problems can be integrated into the MIP. We show that encoding a limited subset of the propositional problem to augment the MIP can yield more accurate guidance, partly by exploiting structure such as propositional landmarks and propositional resources. Our results show that the use of this heuristic enhances scalability on problems where numeric resource interaction is key in finding a solution.