Abstract:Active learning is increasingly adopted for expensive multi-objective combinatorial optimization problems, but it involves a challenging subset selection problem, optimizing the batch acquisition score that quantifies the goodness of a batch for evaluation. Due to the excessively large search space of the subset selection problem, prior methods optimize the batch acquisition on the latent space, which has discrepancies with the actual space, or optimize individual acquisition scores without considering the dependencies among candidates in a batch instead of directly optimizing the batch acquisition. To manage the vast search space, a simple and effective approach is the greedy method, which decomposes the problem into smaller subproblems, yet it has difficulty in parallelization since each subproblem depends on the outcome from the previous ones. To this end, we introduce a novel greedy-style subset selection algorithm that optimizes batch acquisition directly on the combinatorial space by sequential greedy sampling from the greedy policy, specifically trained to address all greedy subproblems concurrently. Notably, our experiments on the red fluorescent proteins design task show that our proposed method achieves the baseline performance in 1.69x fewer queries, demonstrating its efficiency.
Abstract:The deployment of large-scale generative models is often restricted by their potential risk of causing harm to users in unpredictable ways. We focus on the problem of black-box red teaming, where a red team generates test cases and interacts with the victim model to discover a diverse set of failures with limited query access. Existing red teaming methods construct test cases based on human supervision or language model (LM) and query all test cases in a brute-force manner without incorporating any information from past evaluations, resulting in a prohibitively large number of queries. To this end, we propose Bayesian red teaming (BRT), novel query-efficient black-box red teaming methods based on Bayesian optimization, which iteratively identify diverse positive test cases leading to model failures by utilizing the pre-defined user input pool and the past evaluations. Experimental results on various user input pools demonstrate that our method consistently finds a significantly larger number of diverse positive test cases under the limited query budget than the baseline methods. The source code is available at https://github.com/snu-mllab/Bayesian-Red-Teaming.
Abstract:Recent works on neural network pruning advocate that reducing the depth of the network is more effective in reducing run-time memory usage and accelerating inference latency than reducing the width of the network through channel pruning. In this regard, some recent works propose depth compression algorithms that merge convolution layers. However, the existing algorithms have a constricted search space and rely on human-engineered heuristics. In this paper, we propose a novel depth compression algorithm which targets general convolution operations. We propose a subset selection problem that replaces inefficient activation layers with identity functions and optimally merges consecutive convolution operations into shallow equivalent convolution operations for efficient end-to-end inference latency. Since the proposed subset selection problem is NP-hard, we formulate a surrogate optimization problem that can be solved exactly via two-stage dynamic programming within a few seconds. We evaluate our methods and baselines by TensorRT for a fair inference latency comparison. Our method outperforms the baseline method with higher accuracy and faster inference speed in MobileNetV2 on the ImageNet dataset. Specifically, we achieve $1.61\times$speed-up with only $0.62$\%p accuracy drop in MobileNetV2-1.4 on the ImageNet.
Abstract:We focus on the problem of adversarial attacks against models on discrete sequential data in the black-box setting where the attacker aims to craft adversarial examples with limited query access to the victim model. Existing black-box attacks, mostly based on greedy algorithms, find adversarial examples using pre-computed key positions to perturb, which severely limits the search space and might result in suboptimal solutions. To this end, we propose a query-efficient black-box attack using Bayesian optimization, which dynamically computes important positions using an automatic relevance determination (ARD) categorical kernel. We introduce block decomposition and history subsampling techniques to improve the scalability of Bayesian optimization when an input sequence becomes long. Moreover, we develop a post-optimization algorithm that finds adversarial examples with smaller perturbation size. Experiments on natural language and protein classification tasks demonstrate that our method consistently achieves higher attack success rate with significant reduction in query count and modification rate compared to the previous state-of-the-art methods.
Abstract:Reducing the high computational cost of large convolutional neural networks is crucial when deploying the networks to resource-constrained environments. We first show the greedy approach of recent channel pruning methods ignores the inherent quadratic coupling between channels in the neighboring layers and cannot safely remove inactive weights during the pruning procedure. Furthermore, due to these inactive weights, the greedy methods cannot guarantee to satisfy the given resource constraints and deviate with the true objective. In this regard, we propose a novel channel selection method that optimally selects channels via discrete QCQP, which provably prevents any inactive weights and guarantees to meet the resource constraints tightly in terms of FLOPs, memory usage, and network size. We also propose a quadratic model that accurately estimates the actual inference time of the pruned network, which allows us to adopt inference time as a resource constraint option. Furthermore, we generalize our method to extend the selection granularity beyond channels and handle non-sequential connections. Our experiments on CIFAR-10 and ImageNet show our proposed pruning method outperforms other fixed-importance channel pruning methods on various network architectures.