Minhui
Abstract:The deployment of large language models (LLMs) like ChatGPT and Gemini has shown their powerful natural language generation capabilities. However, these models can inadvertently learn and retain sensitive information and harmful content during training, raising significant ethical and legal concerns. To address these issues, machine unlearning has been introduced as a potential solution. While existing unlearning methods take into account the specific characteristics of LLMs, they often suffer from high computational demands, limited applicability, or the risk of catastrophic forgetting. To address these limitations, we propose a lightweight unlearning framework based on Retrieval-Augmented Generation (RAG) technology. By modifying the external knowledge base of RAG, we simulate the effects of forgetting without directly interacting with the unlearned LLM. We approach the construction of unlearned knowledge as a constrained optimization problem, deriving two key components that underpin the effectiveness of RAG-based unlearning. This RAG-based approach is particularly effective for closed-source LLMs, where existing unlearning methods often fail. We evaluate our framework through extensive experiments on both open-source and closed-source models, including ChatGPT, Gemini, Llama-2-7b-chat-hf, and PaLM 2. The results demonstrate that our approach meets five key unlearning criteria: effectiveness, universality, harmlessness, simplicity, and robustness. Meanwhile, this approach can extend to multimodal large language models and LLM-based agents.
Abstract:Machine unlearning refers to the process of mitigating the influence of specific training data on machine learning models based on removal requests from data owners. However, one important area that has been largely overlooked in the research of unlearning is reinforcement learning. Reinforcement learning focuses on training an agent to make optimal decisions within an environment to maximize its cumulative rewards. During the training, the agent tends to memorize the features of the environment, which raises a significant concern about privacy. As per data protection regulations, the owner of the environment holds the right to revoke access to the agent's training data, thus necessitating the development of a novel and pressing research field, known as \emph{reinforcement unlearning}. Reinforcement unlearning focuses on revoking entire environments rather than individual data samples. This unique characteristic presents three distinct challenges: 1) how to propose unlearning schemes for environments; 2) how to avoid degrading the agent's performance in remaining environments; and 3) how to evaluate the effectiveness of unlearning. To tackle these challenges, we propose two reinforcement unlearning methods. The first method is based on decremental reinforcement learning, which aims to erase the agent's previously acquired knowledge gradually. The second method leverages environment poisoning attacks, which encourage the agent to learn new, albeit incorrect, knowledge to remove the unlearning environment. Particularly, to tackle the third challenge, we introduce the concept of ``environment inference attack'' to evaluate the unlearning outcomes. The source code is available at \url{https://anonymous.4open.science/r/Reinforcement-Unlearning-D347}.
Abstract:Model inversion attacks involve reconstructing the training data of a target model, which raises serious privacy concerns for machine learning models. However, these attacks, especially learning-based methods, are likely to suffer from low attack accuracy, i.e., low classification accuracy of these reconstructed data by machine learning classifiers. Recent studies showed an alternative strategy of model inversion attacks, GAN-based optimization, can improve the attack accuracy effectively. However, these series of GAN-based attacks reconstruct only class-representative training data for a class, whereas learning-based attacks can reconstruct diverse data for different training data in each class. Hence, in this paper, we propose a new training paradigm for a learning-based model inversion attack that can achieve higher attack accuracy in a black-box setting. First, we regularize the training process of the attack model with an added semantic loss function and, second, we inject adversarial examples into the training data to increase the diversity of the class-related parts (i.e., the essential features for classification tasks) in training data. This scheme guides the attack model to pay more attention to the class-related parts of the original data during the data reconstruction process. The experimental results show that our method greatly boosts the performance of existing learning-based model inversion attacks. Even when no extra queries to the target model are allowed, the approach can still improve the attack accuracy of reconstructed data. This new attack shows that the severity of the threat from learning-based model inversion adversaries is underestimated and more robust defenses are required.
Abstract:Reinforcement learning (RL) is one of the most important branches of AI. Due to its capacity for self-adaption and decision-making in dynamic environments, reinforcement learning has been widely applied in multiple areas, such as healthcare, data markets, autonomous driving, and robotics. However, some of these applications and systems have been shown to be vulnerable to security or privacy attacks, resulting in unreliable or unstable services. A large number of studies have focused on these security and privacy problems in reinforcement learning. However, few surveys have provided a systematic review and comparison of existing problems and state-of-the-art solutions to keep up with the pace of emerging threats. Accordingly, we herein present such a comprehensive review to explain and summarize the challenges associated with security and privacy in reinforcement learning from a new perspective, namely that of the Markov Decision Process (MDP). In this survey, we first introduce the key concepts related to this area. Next, we cover the security and privacy issues linked to the state, action, environment, and reward function of the MDP process, respectively. We further highlight the special characteristics of security and privacy methodologies related to reinforcement learning. Finally, we discuss the possible future research directions within this area.
Abstract:Machine learning models are vulnerable to data inference attacks, such as membership inference and model inversion attacks. In these types of breaches, an adversary attempts to infer a data record's membership in a dataset or even reconstruct this data record using a confidence score vector predicted by the target model. However, most existing defense methods only protect against membership inference attacks. Methods that can combat both types of attacks require a new model to be trained, which may not be time-efficient. In this paper, we propose a differentially private defense method that handles both types of attacks in a time-efficient manner by tuning only one parameter, the privacy budget. The central idea is to modify and normalize the confidence score vectors with a differential privacy mechanism which preserves privacy and obscures membership and reconstructed data. Moreover, this method can guarantee the order of scores in the vector to avoid any loss in classification accuracy. The experimental results show the method to be an effective and timely defense against both membership inference and model inversion attacks with no reduction in accuracy.
Abstract:Transfer learning is an important approach that produces pre-trained teacher models which can be used to quickly build specialized student models. However, recent research on transfer learning has found that it is vulnerable to various attacks, e.g., misclassification and backdoor attacks. However, it is still not clear whether transfer learning is vulnerable to model inversion attacks. Launching a model inversion attack against transfer learning scheme is challenging. Not only does the student model hide its structural parameters, but it is also inaccessible to the adversary. Hence, when targeting a student model, both the white-box and black-box versions of existing model inversion attacks fail. White-box attacks fail as they need the target model's parameters. Black-box attacks fail as they depend on making repeated queries of the target model. However, they may not mean that transfer learning models are impervious to model inversion attacks. Hence, with this paper, we initiate research into model inversion attacks against transfer learning schemes with two novel attack methods. Both are black-box attacks, suiting different situations, that do not rely on queries to the target student model. In the first method, the adversary has the data samples that share the same distribution as the training set of the teacher model. In the second method, the adversary does not have any such samples. Experiments show that highly recognizable data records can be recovered with both of these methods. This means that even if a model is an inaccessible black-box, it can still be inverted.
Abstract:In a model inversion attack, an adversary attempts to reconstruct the data records, used to train a target model, using only the model's output. In launching a contemporary model inversion attack, the strategies discussed are generally based on either predicted confidence score vectors, i.e., black-box attacks, or the parameters of a target model, i.e., white-box attacks. However, in the real world, model owners usually only give out the predicted labels; the confidence score vectors and model parameters are hidden as a defense mechanism to prevent such attacks. Unfortunately, we have found a model inversion method that can reconstruct the input data records based only on the output labels. We believe this is the attack that requires the least information to succeed and, therefore, has the best applicability. The key idea is to exploit the error rate of the target model to compute the median distance from a set of data records to the decision boundary of the target model. The distance, then, is used to generate confidence score vectors which are adopted to train an attack model to reconstruct the data records. The experimental results show that highly recognizable data records can be reconstructed with far less information than existing methods.
Abstract:The excessive use of images in social networks, government databases, and industrial applications has posed great privacy risks and raised serious concerns from the public. Even though differential privacy (DP) is a widely accepted criterion that can provide a provable privacy guarantee, the application of DP on unstructured data such as images is not trivial due to the lack of a clear qualification on the meaningful difference between any two images. In this paper, for the first time, we introduce a novel notion of image-aware differential privacy, referred to as DP-image, that can protect user's personal information in images, from both human and AI adversaries. The DP-Image definition is formulated as an extended version of traditional differential privacy, considering the distance measurements between feature space vectors of images. Then we propose a mechanism to achieve DP-Image by adding noise to an image feature vector. Finally, we conduct experiments with a case study on face image privacy. Our results show that the proposed DP-Image method provides excellent DP protection on images, with a controllable distortion to faces.
Abstract:Planning is one of the main approaches used to improve agents' working efficiency by making plans beforehand. However, during planning, agents face the risk of having their private information leaked. This paper proposes a novel strong privacy-preserving planning approach for logistic-like problems. This approach outperforms existing approaches by addressing two challenges: 1) simultaneously achieving strong privacy, completeness and efficiency, and 2) addressing communication constraints. These two challenges are prevalent in many real-world applications including logistics in military environments and packet routing in networks. To tackle these two challenges, our approach adopts the differential privacy technique, which can both guarantee strong privacy and control communication overhead. To the best of our knowledge, this paper is the first to apply differential privacy to the field of multi-agent planning as a means of preserving the privacy of agents for logistic-like problems. We theoretically prove the strong privacy and completeness of our approach and empirically demonstrate its efficiency. We also theoretically analyze the communication overhead of our approach and illustrate how differential privacy can be used to control it.
Abstract:Artificial Intelligence (AI) has attracted a great deal of attention in recent years. However, alongside all its advancements, problems have also emerged, such as privacy violations, security issues and model fairness. Differential privacy, as a promising mathematical model, has several attractive properties that can help solve these problems, making it quite a valuable tool. For this reason, differential privacy has been broadly applied in AI but to date, no study has documented which differential privacy mechanisms can or have been leveraged to overcome its issues or the properties that make this possible. In this paper, we show that differential privacy can do more than just privacy preservation. It can also be used to improve security, stabilize learning, build fair models, and impose composition in selected areas of AI. With a focus on regular machine learning, distributed machine learning, deep learning, and multi-agent systems, the purpose of this article is to deliver a new view on many possibilities for improving AI performance with differential privacy techniques.