Abstract:Amidst the evolving landscape of artificial intelligence, the convergence of visual and textual information has surfaced as a crucial frontier, leading to the advent of image-text multimodal models. This paper provides a comprehensive review of the evolution and current state of image-text multimodal models, exploring their application value, challenges, and potential research trajectories. Initially, we revisit the basic concepts and developmental milestones of these models, introducing a novel classification that segments their evolution into three distinct phases, based on their time of introduction and subsequent impact on the discipline. Furthermore, based on the tasks' significance and prevalence in the academic landscape, we propose a categorization of the tasks associated with image-text multimodal models into five major types, elucidating the recent progress and key technologies within each category. Despite the remarkable accomplishments of these models, numerous challenges and issues persist. This paper delves into the inherent challenges and limitations of image-text multimodal models, fostering the exploration of prospective research directions. Our objective is to offer an exhaustive overview of the present research landscape of image-text multimodal models and to serve as a valuable reference for future scholarly endeavors. We extend an invitation to the broader community to collaborate in enhancing the image-text multimodal model community, accessible at: \href{https://github.com/i2vec/A-survey-on-image-text-multimodal-models}{https://github.com/i2vec/A-survey-on-image-text-multimodal-models}.
Abstract:The existing contrastive learning methods widely adopt one-hot instance discrimination as pretext task for self-supervised learning, which inevitably neglects rich inter-instance similarities among natural images, then leading to potential representation degeneration. In this paper, we propose a novel image mix method, PatchMix, for contrastive learning in Vision Transformer (ViT), to model inter-instance similarities among images. Following the nature of ViT, we randomly mix multiple images from mini-batch in patch level to construct mixed image patch sequences for ViT. Compared to the existing sample mix methods, our PatchMix can flexibly and efficiently mix more than two images and simulate more complicated similarity relations among natural images. In this manner, our contrastive framework can significantly reduce the gap between contrastive objective and ground truth in reality. Experimental results demonstrate that our proposed method significantly outperforms the previous state-of-the-art on both ImageNet-1K and CIFAR datasets, e.g., 3.0% linear accuracy improvement on ImageNet-1K and 8.7% kNN accuracy improvement on CIFAR100. Moreover, our method achieves the leading transfer performance on downstream tasks, object detection and instance segmentation on COCO dataset. The code is available at https://github.com/visresearch/patchmix
Abstract:In this study, we propose a machine-learning-based approach to identify the modal parameters of the output only data for structural health monitoring (SHM) that makes full use of the characteristic of independence of modal responses and the principle of machine learning. By taking advantage of the independence feature of each mode, we use the principle of unsupervised learning, making the training process of the deep neural network becomes the process of modal separation. A self-coding deep neural network is designed to identify the structural modal parameters from the vibration data of structures. The mixture signals, that is, the structural response data, are used as the input of the neural network. Then we use a complex cost function to restrict the training process of the neural network, making the output of the third layer the modal responses we want, and the weights of the last two layers are mode shapes. The deep neural network is essentially a nonlinear objective function optimization problem. A novel loss function is proposed to constrain the independent feature with consideration of uncorrelation and non-Gaussianity to restrict the designed neural network to obtain the structural modal parameters. A numerical example of a simple structure and an example of actual SHM data from a cable-stayed bridge are presented to illustrate the modal parameter identification ability of the proposed approach. The results show the approach s good capability in blindly extracting modal information from system responses.
Abstract:Lifelong machine learning is a novel machine learning paradigm which can continually accumulate knowledge during learning. The knowledge extracting and reusing abilities enable the lifelong machine learning to solve the related problems. The traditional approaches like Na\"ive Bayes and some neural network based approaches only aim to achieve the best performance upon a single task. Unlike them, the lifelong machine learning in this paper focuses on how to accumulate knowledge during learning and leverage them for further tasks. Meanwhile, the demand for labelled data for training also is significantly decreased with the knowledge reusing. This paper suggests that the aim of the lifelong learning is to use less labelled data and computational cost to achieve the performance as well as or even better than the supervised learning.