Abstract:An accurate and robust localization system is crucial for autonomous vehicles (AVs) to enable safe driving in urban scenes. While existing global navigation satellite system (GNSS)-based methods are effective at locating vehicles in open-sky regions, achieving high-accuracy positioning in urban canyons such as lower layers of multi-layer bridges, streets beside tall buildings, tunnels, etc., remains a challenge. In this paper, we investigate the potential of cellular-vehicle-to-everything (C-V2X) wireless communications in improving the localization performance of AVs under GNSS-denied environments. Specifically, we propose the first roadside unit (RSU)-enabled cooperative localization framework, namely CV2X-LOCA, that only uses C-V2X channel state information to achieve lane-level positioning accuracy. CV2X-LOCA consists of four key parts: data processing module, coarse positioning module, environment parameter correcting module, and vehicle trajectory filtering module. These modules jointly handle challenges present in dynamic C-V2X networks. Extensive simulation and field experiments show that CV2X-LOCA achieves state-of-the-art performance for vehicle localization even under noisy conditions with high-speed movement and sparse RSUs coverage environments. The study results also provide insights into future investment decisions for transportation agencies regarding deploying RSUs cost-effectively.
Abstract:Crash sequence analysis has been shown in prior studies to be useful for characterizing crashes and identifying safety countermeasures. Sequence analysis is highly domain-specific, but its various techniques have not been evaluated for adaptation to crash sequences. This paper evaluates the impact of encoding and dissimilarity measures on crash sequence analysis and clustering. Sequence data of interstate highway, single-vehicle crashes in the United States, from 2016-2018, were studied. Two encoding schemes and five optimal matching based dissimilarity measures were compared by evaluating the sequence clustering results. The five dissimilarity measures were categorized into two groups based on correlations between dissimilarity matrices. The optimal dissimilarity measure and encoding scheme were identified based on the agreements with a benchmark crash categorization. The transition-rate-based, localized optimal matching dissimilarity and consolidated encoding scheme had the highest agreement with the benchmark. Evaluation results indicate that the selection of dissimilarity measure and encoding scheme determines the results of sequence clustering and crash characterization. A dissimilarity measure that considers the relationships between events and domain context tends to perform well in crash sequence clustering. An encoding scheme that consolidates similar events naturally takes domain context into consideration.