Abstract:MusicGen is a music generation language model (LM) that can be conditioned on textual descriptions and melodic features. We introduce MusicGen-Chord, which extends this capability by incorporating chord progression features. This model modifies one-hot encoded melody chroma vectors into multi-hot encoded chord chroma vectors, enabling the generation of music that reflects both chord progressions and textual descriptions. Furthermore, we developed MusicGen-Remixer, an application utilizing MusicGen-Chord to generate remixes of input music conditioned on textual descriptions. Both models are integrated into Replicate's web-UI using cog, facilitating broad accessibility and user-friendly controllable interaction for creating and experiencing AI-generated music.
Abstract:Pansori is one of the most representative vocal genres of Korean traditional music, which has an elaborated vocal melody line with strong vibrato. Although the music is transmitted orally without any music notation, transcribing pansori music in Western staff notation has been introduced for several purposes, such as documentation of music, education, or research. In this paper, we introduce computational analysis of pansori based on both audio and corresponding transcription, how modern Music Information Retrieval tasks can be used in analyzing traditional music and how it revealed different audio characteristics of what pansori contains.
Abstract:Text-to-Music Retrieval, finding music based on a given natural language query, plays a pivotal role in content discovery within extensive music databases. To address this challenge, prior research has predominantly focused on a joint embedding of music audio and text, utilizing it to retrieve music tracks that exactly match descriptive queries related to musical attributes (i.e. genre, instrument) and contextual elements (i.e. mood, theme). However, users also articulate a need to explore music that shares similarities with their favorite tracks or artists, such as \textit{I need a similar track to Superstition by Stevie Wonder}. To address these concerns, this paper proposes an improved Text-to-Music Retrieval model, denoted as TTMR++, which utilizes rich text descriptions generated with a finetuned large language model and metadata. To accomplish this, we obtained various types of seed text from several existing music tag and caption datasets and a knowledge graph dataset of artists and tracks. The experimental results show the effectiveness of TTMR++ in comparison to state-of-the-art music-text joint embedding models through a comprehensive evaluation involving various musical text queries.
Abstract:We introduce a project that revives a piece of 15th-century Korean court music, Chihwapyeong and Chwipunghyeong, composed upon the poem Songs of the Dragon Flying to Heaven. One of the earliest examples of Jeongganbo, a Korean musical notation system, the remaining version only consists of a rudimentary melody. Our research team, commissioned by the National Gugak (Korean Traditional Music) Center, aimed to transform this old melody into a performable arrangement for a six-part ensemble. Using Jeongganbo data acquired through bespoke optical music recognition, we trained a BERT-like masked language model and an encoder-decoder transformer model. We also propose an encoding scheme that strictly follows the structure of Jeongganbo and denotes note durations as positions. The resulting machine-transformed version of Chihwapyeong and Chwipunghyeong were evaluated by experts and performed by the Court Music Orchestra of National Gugak Center. Our work demonstrates that generative models can successfully be applied to traditional music with limited training data if combined with careful design.
Abstract:Representing symbolic music with compound tokens, where each token consists of several different sub-tokens representing a distinct musical feature or attribute, offers the advantage of reducing sequence length. While previous research has validated the efficacy of compound tokens in music sequence modeling, predicting all sub-tokens simultaneously can lead to suboptimal results as it may not fully capture the interdependencies between them. We introduce the Nested Music Transformer (NMT), an architecture tailored for decoding compound tokens autoregressively, similar to processing flattened tokens, but with low memory usage. The NMT consists of two transformers: the main decoder that models a sequence of compound tokens and the sub-decoder for modeling sub-tokens of each compound token. The experiment results showed that applying the NMT to compound tokens can enhance the performance in terms of better perplexity in processing various symbolic music datasets and discrete audio tokens from the MAESTRO dataset.
Abstract:Word embedding has become an essential means for text-based information retrieval. Typically, word embeddings are learned from large quantities of general and unstructured text data. However, in the domain of music, the word embedding may have difficulty understanding musical contexts or recognizing music-related entities like artists and tracks. To address this issue, we propose a new approach called Musical Word Embedding (MWE), which involves learning from various types of texts, including both everyday and music-related vocabulary. We integrate MWE into an audio-word joint representation framework for tagging and retrieving music, using words like tag, artist, and track that have different levels of musical specificity. Our experiments show that using a more specific musical word like track results in better retrieval performance, while using a less specific term like tag leads to better tagging performance. To balance this compromise, we suggest multi-prototype training that uses words with different levels of musical specificity jointly. We evaluate both word embedding and audio-word joint embedding on four tasks (tag rank prediction, music tagging, query-by-tag, and query-by-track) across two datasets (Million Song Dataset and MTG-Jamendo). Our findings show that the suggested MWE is more efficient and robust than the conventional word embedding.
Abstract:In recent years, advancements in neural network designs and the availability of large-scale labeled datasets have led to significant improvements in the accuracy of piano transcription models. However, most previous work focused on high-performance offline transcription, neglecting deliberate consideration of model size. The goal of this work is to implement real-time inference for piano transcription while ensuring both high performance and lightweight. To this end, we propose novel architectures for convolutional recurrent neural networks, redesigning an existing autoregressive piano transcription model. First, we extend the acoustic module by adding a frequency-conditioned FiLM layer to the CNN module to adapt the convolutional filters on the frequency axis. Second, we improve note-state sequence modeling by using a pitchwise LSTM that focuses on note-state transitions within a note. In addition, we augment the autoregressive connection with an enhanced recursive context. Using these components, we propose two types of models; one for high performance and the other for high compactness. Through extensive experiments, we show that the proposed models are comparable to state-of-the-art models in terms of note accuracy on the MAESTRO dataset. We also investigate the effective model size and real-time inference latency by gradually streamlining the architecture. Finally, we conduct cross-data evaluation on unseen piano datasets and in-depth analysis to elucidate the effect of the proposed components in the view of note length and pitch range.
Abstract:Automatically estimating the performance difficulty of a music piece represents a key process in music education to create tailored curricula according to the individual needs of the students. Given its relevance, the Music Information Retrieval (MIR) field depicts some proof-of-concept works addressing this task that mainly focuses on high-level music abstractions such as machine-readable scores or music sheet images. In this regard, the potential of directly analyzing audio recordings has been generally neglected, which prevents students from exploring diverse music pieces that may not have a formal symbolic-level transcription. This work pioneers in the automatic estimation of performance difficulty of music pieces on audio recordings with two precise contributions: (i) the first audio-based difficulty estimation dataset -- namely, Piano Syllabus (PSyllabus) dataset -- featuring 7,901 piano pieces across 11 difficulty levels from 1,233 composers; and (ii) a recognition framework capable of managing different input representations -- both unimodal and multimodal manners -- directly derived from audio to perform the difficulty estimation task. The comprehensive experimentation comprising different pre-training schemes, input modalities, and multi-task scenarios prove the validity of the proposal and establishes PSyllabus as a reference dataset for audio-based difficulty estimation in the MIR field. The dataset as well as the developed code and trained models are publicly shared to promote further research in the field.
Abstract:Estimating the performance difficulty of a musical score is crucial in music education for adequately designing the learning curriculum of the students. Although the Music Information Retrieval community has recently shown interest in this task, existing approaches mainly use machine-readable scores, leaving the broader case of sheet music images unaddressed. Based on previous works involving sheet music images, we use a mid-level representation, bootleg score, describing notehead positions relative to staff lines coupled with a transformer model. This architecture is adapted to our task by introducing an encoding scheme that reduces the encoded sequence length to one-eighth of the original size. In terms of evaluation, we consider five datasets -- more than 7500 scores with up to 9 difficulty levels -- , two of them particularly compiled for this work. The results obtained when pretraining the scheme on the IMSLP corpus and fine-tuning it on the considered datasets prove the proposal's validity, achieving the best-performing model with a balanced accuracy of 40.34\% and a mean square error of 1.33. Finally, we provide access to our code, data, and models for transparency and reproducibility.
Abstract:Lyric translation, a field studied for over a century, is now attracting computational linguistics researchers. We identified two limitations in previous studies. Firstly, lyric translation studies have predominantly focused on Western genres and languages, with no previous study centering on K-pop despite its popularity. Second, the field of lyric translation suffers from a lack of publicly available datasets; to the best of our knowledge, no such dataset exists. To broaden the scope of genres and languages in lyric translation studies, we introduce a novel singable lyric translation dataset, approximately 89\% of which consists of K-pop song lyrics. This dataset aligns Korean and English lyrics line-by-line and section-by-section. We leveraged this dataset to unveil unique characteristics of K-pop lyric translation, distinguishing it from other extensively studied genres, and to construct a neural lyric translation model, thereby underscoring the importance of a dedicated dataset for singable lyric translations.