Abstract:Leitmotifs are musical phrases that are reprised in various forms throughout a piece. Due to diverse variations and instrumentation, detecting the occurrence of leitmotifs from audio recordings is a highly challenging task. Leitmotif detection may be handled as a subcategory of audio event detection, where leitmotif activity is predicted at the frame level. However, as leitmotifs embody distinct, coherent musical structures, a more holistic approach akin to bounding box regression in visual object detection can be helpful. This method captures the entirety of a motif rather than fragmenting it into individual frames, thereby preserving its musical integrity and producing more useful predictions. We present our experimental results on tackling leitmotif detection as a boundary regression task.
Abstract:We introduce a project that revives a piece of 15th-century Korean court music, Chihwapyeong and Chwipunghyeong, composed upon the poem Songs of the Dragon Flying to Heaven. One of the earliest examples of Jeongganbo, a Korean musical notation system, the remaining version only consists of a rudimentary melody. Our research team, commissioned by the National Gugak (Korean Traditional Music) Center, aimed to transform this old melody into a performable arrangement for a six-part ensemble. Using Jeongganbo data acquired through bespoke optical music recognition, we trained a BERT-like masked language model and an encoder-decoder transformer model. We also propose an encoding scheme that strictly follows the structure of Jeongganbo and denotes note durations as positions. The resulting machine-transformed version of Chihwapyeong and Chwipunghyeong were evaluated by experts and performed by the Court Music Orchestra of National Gugak Center. Our work demonstrates that generative models can successfully be applied to traditional music with limited training data if combined with careful design.