Abstract:In this technical report, we investigate the predictive performance differences of a rule-based approach and the GNN architectures NBFNet and A*Net with respect to knowledge graph completion. For the two most common benchmarks, we find that a substantial fraction of the performance difference can be explained by one unique negative pattern on each dataset that is hidden from the rule-based approach. Our findings add a unique perspective on the performance difference of different model classes for knowledge graph completion: Models can achieve a predictive performance advantage by penalizing scores of incorrect facts opposed to providing high scores for correct facts.
Abstract:Outlier detection is a crucial analytical tool in various fields. In critical systems like manufacturing, malfunctioning outlier detection can be costly and safety-critical. Therefore, there is a significant need for explainable artificial intelligence (XAI) when deploying opaque models in such environments. This study focuses on manufacturing time series data from a German automotive supply industry. We utilize autoencoders to compress the entire time series and then apply anomaly detection techniques to its latent features. For outlier interpretation, we (i) adopt widely used XAI techniques to the autoencoder's encoder. Additionally, (ii) we propose AEE, Aggregated Explanatory Ensemble, a novel approach that fuses explanations of multiple XAI techniques into a single, more expressive interpretation. For evaluation of explanations, (iii) we propose a technique to measure the quality of encoder explanations quantitatively. Furthermore, we qualitatively assess the effectiveness of outlier explanations with domain expertise.
Abstract:We present a new approach to goal recognition that involves comparing observed facts with their expected probabilities. These probabilities depend on a specified goal g and initial state s0. Our method maps these probabilities and observed facts into a real vector space to compute heuristic values for potential goals. These values estimate the likelihood of a given goal being the true objective of the observed agent. As obtaining exact expected probabilities for observed facts in an observation sequence is often practically infeasible, we propose and empirically validate a method for approximating these probabilities. Our empirical results show that the proposed approach offers improved goal recognition precision compared to state-of-the-art techniques while reducing computational complexity.
Abstract:Reinforcement learning (RL) has seen significant success across various domains, but its adoption is often limited by the black-box nature of neural network policies, making them difficult to interpret. In contrast, symbolic policies allow representing decision-making strategies in a compact and interpretable way. However, learning symbolic policies directly within on-policy methods remains challenging. In this paper, we introduce SYMPOL, a novel method for SYMbolic tree-based on-POLicy RL. SYMPOL employs a tree-based model integrated with a policy gradient method, enabling the agent to learn and adapt its actions while maintaining a high level of interpretability. We evaluate SYMPOL on a set of benchmark RL tasks, demonstrating its superiority over alternative tree-based RL approaches in terms of performance and interpretability. To the best of our knowledge, this is the first method, that allows a gradient-based end-to-end learning of interpretable, axis-aligned decision trees on-policy. Therefore, SYMPOL can become the foundation for a new class of interpretable RL based on decision trees. Our implementation is available under: https://github.com/s-marton/SYMPOL
Abstract:Tabular data is prevalent in real-world machine learning applications, and new models for supervised learning of tabular data are frequently proposed. Comparative studies assessing the performance of models typically consist of model-centric evaluation setups with overly standardized data preprocessing. This paper demonstrates that such model-centric evaluations are biased, as real-world modeling pipelines often require dataset-specific preprocessing and feature engineering. Therefore, we propose a data-centric evaluation framework. We select 10 relevant datasets from Kaggle competitions and implement expert-level preprocessing pipelines for each dataset. We conduct experiments with different preprocessing pipelines and hyperparameter optimization (HPO) regimes to quantify the impact of model selection, HPO, feature engineering, and test-time adaptation. Our main findings are: 1. After dataset-specific feature engineering, model rankings change considerably, performance differences decrease, and the importance of model selection reduces. 2. Recent models, despite their measurable progress, still significantly benefit from manual feature engineering. This holds true for both tree-based models and neural networks. 3. While tabular data is typically considered static, samples are often collected over time, and adapting to distribution shifts can be important even in supposedly static data. These insights suggest that research efforts should be directed toward a data-centric perspective, acknowledging that tabular data requires feature engineering and often exhibits temporal characteristics.
Abstract:Neural networks often assume independence among input data samples, disregarding correlations arising from inherent clustering patterns in real-world datasets (e.g., due to different sites or repeated measurements). Recently, mixed effects neural networks (MENNs) which separate cluster-specific 'random effects' from cluster-invariant 'fixed effects' have been proposed to improve generalization and interpretability for clustered data. However, existing methods only allow for approximate quantification of cluster effects and are limited to regression and binary targets with only one clustering feature. We present MC-GMENN, a novel approach employing Monte Carlo methods to train Generalized Mixed Effects Neural Networks. We empirically demonstrate that MC-GMENN outperforms existing mixed effects deep learning models in terms of generalization performance, time complexity, and quantification of inter-cluster variance. Additionally, MC-GMENN is applicable to a wide range of datasets, including multi-class classification tasks with multiple high-cardinality categorical features. For these datasets, we show that MC-GMENN outperforms conventional encoding and embedding methods, simultaneously offering a principled methodology for interpreting the effects of clustering patterns.
Abstract:Explainable Artificial Intelligence is critical in unraveling decision-making processes in complex machine learning models. LIME (Local Interpretable Model-agnostic Explanations) is a well-known XAI framework for image analysis. It utilizes image segmentation to create features to identify relevant areas for classification. Consequently, poor segmentation can compromise the consistency of the explanation and undermine the importance of the segments, affecting the overall interpretability. Addressing these challenges, we introduce DSEG-LIME (Data-Driven Segmentation LIME), featuring: i) a data-driven segmentation for human-recognized feature generation, and ii) a hierarchical segmentation procedure through composition. We benchmark DSEG-LIME on pre-trained models with images from the ImageNet dataset - scenarios without domain-specific knowledge. The analysis includes a quantitative evaluation using established XAI metrics, complemented by a qualitative assessment through a user study. Our findings demonstrate that DSEG outperforms in most of the XAI metrics and enhances the alignment of explanations with human-recognized concepts, significantly improving interpretability. The code is available under: https://github. com/patrick-knab/DSEG-LIME
Abstract:Transformers demonstrate impressive performance on a range of reasoning benchmarks. To evaluate the degree to which these abilities are a result of actual reasoning, existing work has focused on developing sophisticated benchmarks for behavioral studies. However, these studies do not provide insights into the internal mechanisms driving the observed capabilities. To improve our understanding of the internal mechanisms of transformers, we present a comprehensive mechanistic analysis of a transformer trained on a synthetic reasoning task. We identify a set of interpretable mechanisms the model uses to solve the task, and validate our findings using correlational and causal evidence. Our results suggest that it implements a depth-bounded recurrent mechanisms that operates in parallel and stores intermediate results in selected token positions. We anticipate that the motifs we identified in our synthetic setting can provide valuable insights into the broader operating principles of transformers and thus provide a basis for understanding more complex models.
Abstract:Despite the success of deep learning for text and image data, tree-based ensemble models are still state-of-the-art for machine learning with heterogeneous tabular data. However, there is a significant need for tabular-specific gradient-based methods due to their high flexibility. In this paper, we propose $\text{GRANDE}$, $\text{GRA}$die$\text{N}$t-Based $\text{D}$ecision Tree $\text{E}$nsembles, a novel approach for learning hard, axis-aligned decision tree ensembles using end-to-end gradient descent. GRANDE is based on a dense representation of tree ensembles, which affords to use backpropagation with a straight-through operator to jointly optimize all model parameters. Our method combines axis-aligned splits, which is a useful inductive bias for tabular data, with the flexibility of gradient-based optimization. Furthermore, we introduce an advanced instance-wise weighting that facilitates learning representations for both, simple and complex relations, within a single model. We conducted an extensive evaluation on a predefined benchmark with 19 classification datasets and demonstrate that our method outperforms existing gradient-boosting and deep learning frameworks on most datasets.
Abstract:The embedding spaces of image models have been shown to encode a range of social biases such as racism and sexism. Here, we investigate specific factors that contribute to the emergence of these biases in Vision Transformers (ViT). Therefore, we measure the impact of training data, model architecture, and training objectives on social biases in the learned representations of ViTs. Our findings indicate that counterfactual augmentation training using diffusion-based image editing can mitigate biases, but does not eliminate them. Moreover, we find that larger models are less biased than smaller models, and that models trained using discriminative objectives are less biased than those trained using generative objectives. In addition, we observe inconsistencies in the learned social biases. To our surprise, ViTs can exhibit opposite biases when trained on the same data set using different self-supervised objectives. Our findings give insights into the factors that contribute to the emergence of social biases and suggests that we could achieve substantial fairness improvements based on model design choices.