Abstract:Augmented Reality assistance are increasingly popular for supporting users with tasks like assembly and cooking. However, current practice typically provide reactive responses initialized from user requests, lacking consideration of rich contextual and user-specific information. To address this limitation, we propose a novel AR assistance system, Satori, that models both user states and environmental contexts to deliver proactive guidance. Our system combines the Belief-Desire-Intention (BDI) model with a state-of-the-art multi-modal large language model (LLM) to infer contextually appropriate guidance. The design is informed by two formative studies involving twelve experts. A sixteen within-subject study find that Satori achieves performance comparable to an designer-created Wizard-of-Oz (WoZ) system without relying on manual configurations or heuristics, thereby enhancing generalizability, reusability and opening up new possibilities for AR assistance.
Abstract:Electroencephalogram (EEG) recordings are often contaminated with artifacts. Various methods have been developed to eliminate or weaken the influence of artifacts. However, most of them rely on prior experience for analysis. Here, we propose an deep learning framework to separate neural signal and artifacts in the embedding space and reconstruct the denoised signal, which is called DeepSeparator. DeepSeparator employs an encoder to extract and amplify the features in the raw EEG, a module called decomposer to extract the trend, detect and suppress artifact and a decoder to reconstruct the denoised signal. Besides, DeepSeparator can extract the artifact, which largely increases the model interpretability. The proposed method is tested with a semi-synthetic EEG dataset and a real task-related EEG dataset, suggesting that DeepSeparator outperforms the conventional models in both EOG and EMG artifact removal. DeepSeparator can be extended to multi-channel EEG and data of any length. It may motivate future developments and application of deep learning-based EEG denoising. The code for DeepSeparator is available at https://github.com/ncclabsustech/DeepSeparator.
Abstract:For conversational text-to-speech (TTS) systems, it is vital that the systems can adjust the spoken styles of synthesized speech according to different content and spoken styles in historical conversations. However, the study about learning spoken styles from historical conversations is still in its infancy. Only the transcripts of the historical conversations are considered, which neglects the spoken styles in historical speeches. Moreover, only the interactions of the global aspect between speakers are modeled, missing the party aspect self interactions inside each speaker. In this paper, to achieve better spoken style learning for conversational TTS, we propose a spoken style learning approach with multi-modal hierarchical context encoding. The textual information and spoken styles in the historical conversations are processed through multiple hierarchical recurrent neural networks to learn the spoken style related features in global and party aspects. The attention mechanism is further employed to summarize these features into a conversational context encoding. Experimental results demonstrate the effectiveness of our proposed approach, which outperform a baseline method using context encoding learnt only from the transcripts in global aspects, with MOS score on the naturalness of synthesized speech increasing from 3.138 to 3.408 and ABX preference rate exceeding the baseline method by 36.45%.