Abstract:Electroencephalography (EEG) and Magnetoencephalography (MEG) are pivotal in understanding brain activity but are limited by their poor spatial resolution. EEG/MEG source imaging (ESI) infers the high-resolution electric field distribution in the brain based on the low-resolution scalp EEG/MEG observations. However, the ESI problem is ill-posed, and how to bring neuroscience priors into ESI method is the key. Here, we present a novel method which utilizes the Brain Geometric-informed Basis Functions (GBFs) as priors to enhance EEG/MEG source imaging. Through comprehensive experiments on both synthetic data and real task EEG data, we demonstrate the superiority of GBFs over traditional spatial basis functions (e.g., Harmonic and MSP), as well as existing ESI methods (e.g., dSPM, MNE, sLORETA, eLORETA). GBFs provide robust ESI results under different noise levels, and result in biologically interpretable EEG sources. We believe the high-resolution EEG source imaging from GBFs will greatly advance neuroscience research.
Abstract:Identifying causal relationships among distinct brain areas, known as effective connectivity, holds key insights into the brain's information processing and cognitive functions. Electroencephalogram (EEG) signals exhibit intricate dynamics and inter-areal interactions within the brain. However, methods for characterizing nonlinear causal interactions among multiple brain regions remain relatively underdeveloped. In this study, we proposed a data-driven framework to infer effective connectivity by perturbing the trained neural networks. Specifically, we trained neural networks (i.e., CNN, vanilla RNN, GRU, LSTM, and Transformer) to predict future EEG signals according to historical data and perturbed the networks' input to obtain effective connectivity (EC) between the perturbed EEG channel and the rest of the channels. The EC reflects the causal impact of perturbing one node on others. The performance was tested on the synthetic EEG generated by a biological-plausible Jansen-Rit model. CNN and Transformer obtained the best performance on both 3-channel and 90-channel synthetic EEG data, outperforming the classical Granger causality method. Our work demonstrated the potential of perturbing an artificial neural network, learned to predict future system dynamics, to uncover the underlying causal structure.
Abstract:Transcranial temporal interference stimulation (tTIS) has been reported to be effective in stimulating deep brain structures in experimental studies. However, a computational framework for optimizing the tTIS strategy and simulating the impact of tTIS on the brain is still lacking, as previous methods rely on predefined parameters and hardly adapt to additional constraints. Here, we propose a general framework, namely multi-objective optimization via evolutionary algorithm (MOVEA), to solve the nonconvex optimization problem for various stimulation techniques, including tTIS and transcranial alternating current stimulation (tACS). By optimizing the electrode montage in a two-stage structure, MOVEA can be compatible with additional constraints (e.g., the number of electrodes, additional avoidance regions), and MOVEA can accelerate to obtain the Pareto fronts. These Pareto fronts consist of a set of optimal solutions under different requirements, suggesting a trade-off relationship between conflicting objectives, such as intensity and focality. Based on MOVEA, we make comprehensive comparisons between tACS and tTIS in terms of intensity, focality and maneuverability for targets of different depths. Our results show that although the tTIS can only obtain a relatively low maximum achievable electric field strength, for example, the maximum intensity of motor area under tTIS is 0.42V /m, while 0.51V /m under tACS, it helps improve the focality by reducing 60% activated volume outside the target. We further perform ANOVA on the stimulation results of eight subjects with tACS and tTIS. Despite the individual differences in head models, our results suggest that tACS has a greater intensity and tTIS has a higher focality. These findings provide guidance on the choice between tACS and tTIS and indicate a great potential in tTIS-based personalized neuromodulation. Code will be released soon.
Abstract:Electroencephalogram (EEG) recordings are often contaminated with artifacts. Various methods have been developed to eliminate or weaken the influence of artifacts. However, most of them rely on prior experience for analysis. Here, we propose an deep learning framework to separate neural signal and artifacts in the embedding space and reconstruct the denoised signal, which is called DeepSeparator. DeepSeparator employs an encoder to extract and amplify the features in the raw EEG, a module called decomposer to extract the trend, detect and suppress artifact and a decoder to reconstruct the denoised signal. Besides, DeepSeparator can extract the artifact, which largely increases the model interpretability. The proposed method is tested with a semi-synthetic EEG dataset and a real task-related EEG dataset, suggesting that DeepSeparator outperforms the conventional models in both EOG and EMG artifact removal. DeepSeparator can be extended to multi-channel EEG and data of any length. It may motivate future developments and application of deep learning-based EEG denoising. The code for DeepSeparator is available at https://github.com/ncclabsustech/DeepSeparator.
Abstract:EEG source localization is an important technical issue in EEG analysis. Despite many numerical methods existed for EEG source localization, they all rely on strong priors and the deep sources are intractable. Here we propose a deep learning framework using spatial basis function decomposition for EEG source localization. This framework combines the edge sparsity prior and Gaussian source basis, called Edge Sparse Basis Network (ESBN). The performance of ESBN is validated by both synthetic data and real EEG data during motor tasks. The results suggest that the supervised ESBN outperforms the traditional numerical methods in synthetic data and the unsupervised fine-tuning provides more focal and accurate localizations in real data. Our proposed deep learning framework can be extended to account for other source priors, and the real-time property of ESBN can facilitate the applications of EEG in brain-computer interfaces and clinics.