Abstract:Anomaly synthesis strategies can effectively enhance unsupervised anomaly detection. However, existing strategies have limitations in the coverage and controllability of anomaly synthesis, particularly for weak defects that are very similar to normal regions. In this paper, we propose Global and Local Anomaly co-Synthesis Strategy (GLASS), a novel unified framework designed to synthesize a broader coverage of anomalies under the manifold and hypersphere distribution constraints of Global Anomaly Synthesis (GAS) at the feature level and Local Anomaly Synthesis (LAS) at the image level. Our method synthesizes near-in-distribution anomalies in a controllable way using Gaussian noise guided by gradient ascent and truncated projection. GLASS achieves state-of-the-art results on the MVTec AD (detection AUROC of 99.9\%), VisA, and MPDD datasets and excels in weak defect detection. The effectiveness and efficiency have been further validated in industrial applications for woven fabric defect detection. The code and dataset are available at: \url{https://github.com/cqylunlun/GLASS}.
Abstract:Visual anomaly detection aims at classifying and locating the regions that deviate from the normal appearance. Embedding-based methods and reconstruction-based methods are two main approaches for this task. However, they are either not efficient or not precise enough for the industrial detection. To deal with this problem, we derive POUTA (Produce Once Utilize Twice for Anomaly detection), which improves both the accuracy and efficiency by reusing the discriminant information potential in the reconstructive network. We observe that the encoder and decoder representations of the reconstructive network are able to stand for the features of the original and reconstructed image respectively. And the discrepancies between the symmetric reconstructive representations provides roughly accurate anomaly information. To refine this information, a coarse-to-fine process is proposed in POUTA, which calibrates the semantics of each discriminative layer by the high-level representations and supervision loss. Equipped with the above modules, POUTA is endowed with the ability to provide a more precise anomaly location than the prior arts. Besides, the representation reusage also enables to exclude the feature extraction process in the discriminative network, which reduces the parameters and improves the efficiency. Extensive experiments show that, POUTA is superior or comparable to the prior methods with even less cost. Furthermore, POUTA also achieves better performance than the state-of-the-art few-shot anomaly detection methods without any special design, showing that POUTA has strong ability to learn representations inherent in the training data.
Abstract:The Vision Challenge Track 1 for Data-Effificient Defect Detection requires competitors to instance segment 14 industrial inspection datasets in a data-defificient setting. This report introduces the technical details of the team Aoi-overfifitting-Team for this challenge. Our method focuses on the key problem of segmentation quality of defect masks in scenarios with limited training samples. Based on the Hybrid Task Cascade (HTC) instance segmentation algorithm, we connect the transformer backbone (Swin-B) through composite connections inspired by CBNetv2 to enhance the baseline results. Additionally, we propose two model ensemble methods to further enhance the segmentation effect: one incorporates semantic segmentation into instance segmentation, while the other employs multi-instance segmentation fusion algorithms. Finally, using multi-scale training and test-time augmentation (TTA), we achieve an average mAP@0.50:0.95 of more than 48.49% and an average mAR@0.50:0.95 of 66.71% on the test set of the Data Effificient Defect Detection Challenge. The code is available at https://github.com/love6tao/Aoi-overfitting-team