Abstract:Unsupervised anomaly detection methods can identify surface defects in industrial images by leveraging only normal samples for training. Due to the risk of overfitting when learning from a single class, anomaly synthesis strategies are introduced to enhance detection capability by generating artificial anomalies. However, existing strategies heavily rely on anomalous textures from auxiliary datasets. Moreover, their limitations in the coverage and directionality of anomaly synthesis may result in a failure to capture useful information and lead to significant redundancy. To address these issues, we propose a novel Progressive Boundary-guided Anomaly Synthesis (PBAS) strategy, which can directionally synthesize crucial feature-level anomalies without auxiliary textures. It consists of three core components: Approximate Boundary Learning (ABL), Anomaly Feature Synthesis (AFS), and Refined Boundary Optimization (RBO). To make the distribution of normal samples more compact, ABL first learns an approximate decision boundary by center constraint, which improves the center initialization through feature alignment. AFS then directionally synthesizes anomalies with more flexible scales guided by the hypersphere distribution of normal features. Since the boundary is so loose that it may contain real anomalies, RBO refines the decision boundary through the binary classification of artificial anomalies and normal features. Experimental results show that our method achieves state-of-the-art performance and the fastest detection speed on three widely used industrial datasets, including MVTec AD, VisA, and MPDD. The code will be available at: https://github.com/cqylunlun/PBAS.
Abstract:Anomaly synthesis strategies can effectively enhance unsupervised anomaly detection. However, existing strategies have limitations in the coverage and controllability of anomaly synthesis, particularly for weak defects that are very similar to normal regions. In this paper, we propose Global and Local Anomaly co-Synthesis Strategy (GLASS), a novel unified framework designed to synthesize a broader coverage of anomalies under the manifold and hypersphere distribution constraints of Global Anomaly Synthesis (GAS) at the feature level and Local Anomaly Synthesis (LAS) at the image level. Our method synthesizes near-in-distribution anomalies in a controllable way using Gaussian noise guided by gradient ascent and truncated projection. GLASS achieves state-of-the-art results on the MVTec AD (detection AUROC of 99.9\%), VisA, and MPDD datasets and excels in weak defect detection. The effectiveness and efficiency have been further validated in industrial applications for woven fabric defect detection. The code and dataset are available at: \url{https://github.com/cqylunlun/GLASS}.
Abstract:Visual anomaly detection aims at classifying and locating the regions that deviate from the normal appearance. Embedding-based methods and reconstruction-based methods are two main approaches for this task. However, they are either not efficient or not precise enough for the industrial detection. To deal with this problem, we derive POUTA (Produce Once Utilize Twice for Anomaly detection), which improves both the accuracy and efficiency by reusing the discriminant information potential in the reconstructive network. We observe that the encoder and decoder representations of the reconstructive network are able to stand for the features of the original and reconstructed image respectively. And the discrepancies between the symmetric reconstructive representations provides roughly accurate anomaly information. To refine this information, a coarse-to-fine process is proposed in POUTA, which calibrates the semantics of each discriminative layer by the high-level representations and supervision loss. Equipped with the above modules, POUTA is endowed with the ability to provide a more precise anomaly location than the prior arts. Besides, the representation reusage also enables to exclude the feature extraction process in the discriminative network, which reduces the parameters and improves the efficiency. Extensive experiments show that, POUTA is superior or comparable to the prior methods with even less cost. Furthermore, POUTA also achieves better performance than the state-of-the-art few-shot anomaly detection methods without any special design, showing that POUTA has strong ability to learn representations inherent in the training data.
Abstract:One-class classification (OCC) is a longstanding method for anomaly detection. With the powerful representation capability of the pre-trained backbone, OCC methods have witnessed significant performance improvements. Typically, most of these OCC methods employ transfer learning to enhance the discriminative nature of the pre-trained backbone's features, thus achieving remarkable efficacy. While most current approaches emphasize feature transfer strategies, we argue that the optimization objective space within OCC methods could also be an underlying critical factor influencing performance. In this work, we conducted a thorough investigation into the optimization objective of OCC. Through rigorous theoretical analysis and derivation, we unveil a key insights: any space with the suitable norm can serve as an equivalent substitute for the hypersphere center, without relying on the distribution assumption of training samples. Further, we provide guidelines for determining the feasible domain of norms for the OCC optimization objective. This novel insight sparks a simple and data-agnostic deep one-class classification method. Our method is straightforward, with a single 1x1 convolutional layer as a trainable projector and any space with suitable norm as the optimization objective. Extensive experiments validate the reliability and efficacy of our findings and the corresponding methodology, resulting in state-of-the-art performance in both one-class classification and industrial vision anomaly detection and segmentation tasks.
Abstract:Although existing image anomaly detection methods yield impressive results, they are mostly an offline learning paradigm that requires excessive data pre-collection, limiting their adaptability in industrial scenarios with online streaming data. Online learning-based image anomaly detection methods are more compatible with industrial online streaming data but are rarely noticed. For the first time, this paper presents a fully online learning image anomaly detection method, namely LeMO, learning memory for online image anomaly detection. LeMO leverages learnable memory initialized with orthogonal random noise, eliminating the need for excessive data in memory initialization and circumventing the inefficiencies of offline data collection. Moreover, a contrastive learning-based loss function for anomaly detection is designed to enable online joint optimization of memory and image target-oriented features. The presented method is simple and highly effective. Extensive experiments demonstrate the superior performance of LeMO in the online setting. Additionally, in the offline setting, LeMO is also competitive with the current state-of-the-art methods and achieves excellent performance in few-shot scenarios.